

exact solution

		
		interactions in bounded regions

valid in many states		

allows classical comms		

	•	
	manifest causality	

	8	
	difficult quantum comms	

	e difficult quantum comms	not particle detectors

simple quantum comms

9

simple quantum comms

qubits can be used as particle detectors

9

simple quantum comms

qubits can be used as particle detectors

no exact solution

simple quantum comms

qubits can be used as particle detectors

no exact solution

perturbation theory in energy gap

simple quantum comms

qubits can be used as particle detectors

no exact solution

perturbation theory in energy gap

renormalization group improvement

Níckolas de Aguiar Alves

Níckolas de Aguiar Alves Federal University of ABC

Níckolas de Aguiar Alves Federal University of ABC

no quantum effects

all quantum effects

what is a good ansatz for Γ_k ?

Γ_k =

what is a good ansatz for R_k ?

energy scale

Aguiar Alves, Landulfo, and Pereira 2023, in preparation.

rg flow

many physicists

functional renormalization group

1993–1994

Burbano, Perche & Torres

path integral for a particle detector

first FRG flow for a particle detector

what lies ahead?

new cutoffs		
	what lies ahead?	

Nonperturbative Renormalization Group Flow for a Particle Detector

Níckolas de Aguiar Alves, André G. S. Landulfo, and Antônio D. Pereira

N.A.A thanks Alex G. Dias and João C. A. Barata for useful comments

& Universidade Federal do ABC

©⊂ A P E S **A] FAPESP**