Adventure Is Out There A Mathematical Exploration of Cartography Part I

Níckolas Alves

Department of Mathematical Physics Institute of Physics University of São Paulo

May 22, 2020

N. Alves (IFUSP)

Adventure Is Out There

2 Topological Manifolds

N. Alves (IFUSP)

Adventure Is Out There

The Difficult Problem of Cartography

Goal to make a perfect chart of the Earth (which is represented symbolically by M)

Question what is a perfect chart? Question² what is a chart?

The Difficult Problem of Cartography

Goal to make a perfect chart of the Earth (which is represented symbolically by M) Question what is a perfect chart?

Question² what is a chart?

The Difficult Problem of Cartography

Goal to make a perfect chart of the Earth (which is represented symbolically by M) Question what is a perfect chart? Question² what is a chart?

A Chart

A piece of plane paper representing (partially or completely) the surface of the Earth?

 The chart is not only the paper: it also depends on the function mapping points on the Earth to points on the paper
 In mathematical terms, a chart is a pair (U, φ) where U ⊆ M and φ: U → ℝ².

A Chart

- A piece of plane paper representing (partially or completely) the surface of the Earth?
- The chart is not only the paper: it also depends on the function mapping points on the Earth to points on the paper

In mathematical terms, a chart is a pair (U, φ) where $U \subseteq M$ and $\varphi \colon U \to \mathbb{R}^2$.

A Chart

- A piece of plane paper representing (partially or completely) the surface of the Earth?
- The chart is not only the paper: it also depends on the function mapping points on the Earth to points on the paper
 In mathematical terms, a chart is a pair (U, φ) where U ⊆ M and φ: U → ℝ².

- Each point on the Earth must be mapped to one, and only one, point on the chart;
- each point on the chart must represent one, and only one, point on the Earth;
- points which are close on the Earth must be close on the chart and vice-versa.
 - A perfect chart is a pair (U, φ) where U = M and $\varphi \colon U \to \mathbb{R}^2$ is a homeomorphism.

- Each point on the Earth must be mapped to one, and only one, point on the chart;
- each point on the chart must represent one, and only one, point on the Earth;
- points which are close on the Earth must be close on the chart and vice-versa.
 - A perfect chart is a pair (U, φ) where U = M and $\varphi \colon U \to \mathbb{R}^2$ is a homeomorphism.

- Each point on the Earth must be mapped to one, and only one, point on the chart;
- each point on the chart must represent one, and only one, point on the Earth;
- points which are close on the Earth must be close on the chart and vice-versa.
 - A perfect chart is a pair (U, φ) where U = M and $\varphi \colon U \to \mathbb{R}^2$ is a homeomorphism.

- Each point on the Earth must be mapped to one, and only one, point on the chart;
- each point on the chart must represent one, and only one, point on the Earth;
- points which are close on the Earth must be close on the chart and vice-versa.
 - A perfect chart is a pair (U, φ) where U = M and $\varphi \colon U \to \mathbb{R}^2$ is a homeomorphism.

Which space is the Earth?

Taken to be roughly spherical

$$\therefore M = S^2 = \{x \in \mathbb{R}^3; \|x\| = 1\},\$$

where $\left\|\cdot\right\|$ is the Euclidean norm

N. Alves (IFUSP)

Heine-Borel: A Cartographer's Nightmare

Theorem (Heine-Borel)

Consider the metric space (\mathbb{R}^n, d) , where d is the standard Euclidean metric. A subset $K \subseteq \mathbb{R}^n$ is compact if, and only if, it is closed and bounded.

 S^2 is both closed and bounded, so it is compact. \mathbb{R}^2 is not bounded, so it is not compact. Therefore, there can't be a homeomorphism between S^2 and \mathbb{R}^2

Heine-Borel: A Cartographer's Nightmare

Theorem (Heine-Borel)

Consider the metric space (\mathbb{R}^n, d) , where d is the standard Euclidean metric. A subset $K \subseteq \mathbb{R}^n$ is compact if, and only if, it is closed and bounded.

 S^2 is both closed and bounded, so it is compact. \mathbb{R}^2 is not bounded, so it is not compact. Therefore, there can't be a homeomorphism between S^2 and \mathbb{R}^2

Heine-Borel: A Cartographer's Nightmare

Do we need to give up on charting the Earth or can we do something about it?

N. Alves (IFUSP)

Adventure Is Out There

Which axioms can we loose?

Continuity not interesting if all we know is Topology Bijection Global

Which axioms can we loose?

Continuity not interesting if all we know is Topology Bijection

Which axioms can we loose?

Continuity not interesting if all we know is Topology Bijection not convenient, albeit possible Global

Which axioms can we loose?

Continuity not interesting if all we know is Topology Bijection not convenient, albeit possible Global

Which axioms can we loose?

Continuity not interesting if all we know is Topology Bijection not convenient, albeit possible Global changing to a local description might be interesting, if we are able to get a complete description at the end

Which axioms can we loose?

Continuity not interesting if all we know is Topology Bijection not convenient, albeit possible Global changing to a local description might be interesting, if we are able to get a complete description at the end

Current Objective

Make perfect charts of pieces of the Earth that can be "sewn" together continuously and cover the entire Earth

Pieces to be considered

We'll chart six pieces of the Earth:

$$U_i^{\pm} \equiv \left\{ (x_1, x_2, x_3) \in S^2; \operatorname{sign}(x_i) = \pm 1 \right\}.$$

Coordinate maps to be considered

We'll consider the maps $\varphi_1^{\pm} \colon U_i^{\pm} o \mathcal{B}_1(0)$

$$\varphi_1^{\pm}((x_1, x_2, x_3)) = (x_2, x_3),$$

with similar definitions for $\varphi_i^{\pm} \colon U_i^{\pm} \to \mathcal{B}_1(0)$.

N. Alves (IFUSP)

Pieces to be considered

We'll chart six pieces of the Earth:

$$U_i^{\pm} \equiv \left\{ (x_1, x_2, x_3) \in S^2; \operatorname{sign}(x_i) = \pm 1 \right\}.$$

Coordinate maps to be considered

We'll consider the maps $\varphi_1^{\pm} \colon U_i^{\pm} \to \mathcal{B}_1(0)$

$$\varphi_1^{\pm}((x_1, x_2, x_3)) = (x_2, x_3),$$

with similar definitions for $\varphi_i^{\pm} : U_i^{\pm} \to \mathcal{B}_1(0)$.

Exercise

Show that the maps φ_i^{\pm} are homeomorphisms and that the sets U_i^{\pm} cover S^2 . Or just take a look at [2].

Our current description is now made not only through a single chart, but through an atlas.

Issue can we flip the atlas' pages continuously?

N. Alves (IFUSP)

Adventure Is Out There

Our current description is now made not only through a single chart, but through an atlas.

Issue can we flip the atlas' pages continuously?

N. Alves (IFUSP)

Adventure Is Out There

Flipping Pages

If (U, φ) and (V, ψ) are charts with $p \in U \cap V$, $(\varphi \circ \psi^{-1}) : \psi(U \cap V) \to \varphi(U \cap V)$ is continuous

N. Alves (IFUSP)

Adventure Is Out There

Crisis on Infinite Earths

Which possible Earths could we chart in this fashion?

N. Alves (IFUSP)

Adventure Is Out There

Topological Manifolds

N. Alves (IFUSP)

Adventure Is Out There

Formalizing and Generalizing

Definition (Locally Euclidean Space)

Let (M, τ) be a topological space. We say it is a locally Euclidean space of dimension n if, and only if, every point $p \in M$ has an open neighborhood U which has an homeomorphism φ onto an open subset of \mathbb{R}^n . The pair (U, φ) is said to be a chart, U is said to be a coordinate neighborhood and φ is said to be a coordinate system on U. If $\varphi(p) = 0$, the chart (U, φ) is said to be centered at p. **Topological Manifolds**

Formalizing and Generalizing

Theorem

Let (M, τ) be a topological space. (M, τ) is a locally Euclidean space if, and only if, every point $p \in M$ has an open neighborhood U which has an homeomorphism φ onto an open ball of \mathbb{R}^n . **Topological Manifolds**

Formalizing and Generalizing

Proof

Suppose every point $p \in M$ has an open neighborhood U which has an homeomorphism φ onto an open ball of \mathbb{R}^n . Since every open ball is an open set, it follows immediately that (M, τ) is locally Euclidean.

Formalizing and Generalizing

Proof

Suppose (M, τ) is locally Euclidean. Let $p \in M$. We know there is a pair (U, φ) such that U is an open neighborhood of p and $\varphi \colon U \to \varphi(U)$ is a homeomorphism. Since φ is a homeomorphism, $\varphi(U)$ is an open set. In particular, it is an open neighborhood of $\varphi(p)$. Therefore, there is some $\epsilon > 0$ such that $\varphi(p) \subseteq \mathcal{B}_{\epsilon}(\varphi(p)) \subseteq \varphi(U)$. Furthermore, since φ is a homeomorphism, $\varphi^{-1}(\mathcal{B}_{\epsilon}(\varphi(p)))$ is an open neighborhood of p. Also, the restriction of φ to $\varphi^{-1}(\mathcal{B}_{\epsilon}(\varphi(p)))$ is a homeomorphism, proving that $p \in M$ has an open neighborhood which has an homeomorphism onto an open ball of \mathbb{R}^n .

Formalizing and Generalizing

Definition (Atlas)

Let (M, τ) be a locally Euclidean space of dimension n. An atlas on (M, τ) is a collection $\mathcal{A} = \{(U_{\lambda}, \varphi_{\lambda})\}_{\lambda \in \Lambda}$ of charts on (M, τ) such that $M = \bigcup_{\lambda \in \Lambda} U_{\lambda}$.

Formalizing and Generalizing

Definition (Topological Manifold)

A topological manifold of dimension n is a Hausdorff, second-countable, locally Euclidean space of dimension n.

N. Alves (IFUSP)

Adventure Is Out There

Is the dimension of a manifold well-defined?

We assume the following result (which is Corollary 1.6.3 of [14]) without proof:

Theorem (Topological Invariance of Dimension)

Let $n, m \in \mathbb{N}, n > m$. Let $\emptyset \neq U \subseteq \mathbb{R}^n$. There is no continuous injective mapping from U to \mathbb{R}^m . In particular, \mathbb{R}^n and \mathbb{R}^m are not homeomorphic.

Is the dimension of a manifold well-defined?

Lemma

Let $n \in \mathbb{N}$, $p \in \mathbb{R}^n$, $\epsilon > 0$. $\mathcal{B}_{\epsilon}(p)$ is homeomorphic to \mathbb{R}^n .

N. Alves (IFUSP)

Adventure Is Out There

Is the dimension of a manifold well-defined?

Theorem

The dimension of a topological manifold is well-defined.

N. Alves (IFUSP)

Adventure Is Out There

Is the dimension of a manifold well-defined?

Proof

Let (M, τ) be a topological manifold of dimension n and assume, for the sake of contradiction, that it is also a topological manifold of dimension $m \neq n$. We assume without any loss of generality that n > m.

Is the dimension of a manifold well-defined?

Proof

Let $p \in M$. We know there is an open set U with $p \in U$ and a homeomorphism $\varphi \colon U \to \mathcal{B}_{\epsilon}(x) \subseteq \mathbb{R}^n$, for some $\epsilon > 0$ and some $x \in \mathbb{R}^n$. Similarly, there is an open set V with $p \in V$ and a homeomorphism $\psi \colon V \to \psi(V) \subseteq \mathcal{B}_{\delta}(y)$, for some $\delta > 0$ and some $y \in \mathbb{R}^m$. Since open balls in \mathbb{R}^n are homeomorphic to \mathbb{R}^n , we know that V is homeomorphic to \mathbb{R}^m (let's call this homeomorphism g) and U is homeomorphic to \mathbb{R}^n (let's call this homeomorphism f).

Is the dimension of a manifold well-defined?

Proof

We may consider the open set $U \cap V$. We know that $f: U \cap V \to f(U \cap V) \subseteq \mathbb{R}^n$ is a homeomorphism and so is $g: U \cap V \to g(U \cap V) \subseteq \mathbb{R}^m$. Hence, $(g \circ f^{-1}): f(U \cap V) \to \mathbb{R}^m$ is a continuous injective map. The Theorem of Topological Invariance of Dimension tells us this is a contradiction. Hence, (M, τ) can't have two different dimensions, proving the dimension of M is well-defined.

Is the dimension of a manifold well-defined?

Notation

We denote the dimension of a topological manifold (M, τ) by dim M.

N. Alves (IFUSP)

Adventure Is Out There

- Locally Euclidean if we want to chart the space, it surely need to admit charts
- Hausdorff uniqueness of limits
- Second-Countability provides important extra structure

Properties of Topological Manifolds

Let (M, τ) be a topological manifold. It has the following properties[4] Locally compact for it is locally Euclidean;

Separable for it is second-countable;

- Normal for it is Hausdorff, second-countable and locally compact;
- Paracompact for it is Hausdorff, second-countable and locally compact;
- Metrizable for it is normal and second-countable;
- Admits partitions of unity for it is metrizable and separable, and thus, given an atlas A, there is a partition of unity subordinated to the coordinate neighborhoods of A.

Properties of Topological Manifolds

- Locally compact for it is locally Euclidean;
- Separable for it is second-countable;
- Normal for it is Hausdorff, second-countable and locally compact;
- Paracompact for it is Hausdorff, second-countable and locally compact;
- Metrizable for it is normal and second-countable;
- Admits partitions of unity for it is metrizable and separable, and thus, given an atlas A, there is a partition of unity subordinated to the coordinate neighborhoods of A.

Properties of Topological Manifolds

- Locally compact for it is locally Euclidean;
- Separable for it is second-countable;
- Normal for it is Hausdorff, second-countable and locally compact;
- Paracompact for it is Hausdorff, second-countable and locally compact;
- Metrizable for it is normal and second-countable;
- Admits partitions of unity for it is metrizable and separable, and thus, given an atlas A, there is a partition of unity subordinated to the coordinate neighborhoods of A.

Properties of Topological Manifolds

- Locally compact for it is locally Euclidean;
- Separable for it is second-countable;
- Normal for it is Hausdorff, second-countable and locally compact;
- Paracompact for it is Hausdorff, second-countable and locally compact;
- Metrizable for it is normal and second-countable;
- Admits partitions of unity for it is metrizable and separable, and thus, given an atlas A, there is a partition of unity subordinated to the coordinate neighborhoods of A.

Properties of Topological Manifolds

- Locally compact for it is locally Euclidean;
- Separable for it is second-countable;
- Normal for it is Hausdorff, second-countable and locally compact;
- Paracompact for it is Hausdorff, second-countable and locally compact;
- Metrizable for it is normal and second-countable;
- Admits partitions of unity for it is metrizable and separable, and thus, given an atlas A, there is a partition of unity subordinated to the coordinate neighborhoods of A.

Properties of Topological Manifolds

- Locally compact for it is locally Euclidean;
- Separable for it is second-countable;
- Normal for it is Hausdorff, second-countable and locally compact;
- Paracompact for it is Hausdorff, second-countable and locally compact;
- Metrizable for it is normal and second-countable;
- Admits partitions of unity for it is metrizable and separable, and thus, given an atlas A, there is a partition of unity subordinated to the coordinate neighborhoods of A.

Definition (Continuous Curve)

Let (M, τ) be a topological manifold. A curve on M is a function $\gamma: I \to M$, where $I \subseteq \mathbb{R}$. A curve is said to be continuous if it is continuous as a function between topological spaces, where \mathbb{R} is considered to be equipped with the standard topology. Continuity of γ at a point $\lambda \in \mathbb{R}$ is defined in a similar manner.

Proposition

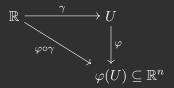
Let (M, τ) be a topological manifold of dimension n. Consider a curve $\gamma \colon \mathbb{R} \to M$. Let $\lambda \in \mathbb{R}$ and consider a chart (U, φ) of M such that $\gamma(\lambda) \in U$. γ is continuous at λ if, and only if, $\varphi \circ \gamma$ is continuous at λ . \Box

N. Alves (IFUSP)

Adventure Is Out There

Proof

Suppose γ is continuous at λ . Since φ is a homeomorphism, $\varphi \circ \gamma$ is a composition of continuous functions at x and hence it is continuous. On the other hand, if $\varphi \circ \gamma$ is continuous at x, notice that $\gamma = \varphi^{-1} \circ (\varphi \circ \gamma)$, and hence γ is the composition of continuous functions.



N. Alves (IFUSP)

Continuity is chart independent!

Let (U, φ) and (V, ψ) be charts with $\gamma(\lambda) \in U \cap V$. Then $\psi \circ \gamma$ is continuous at λ if, and only if, $\varphi \circ \gamma$ is continuous at λ :

$$\begin{split} \psi \circ \gamma &= \psi \circ (\varphi^{-1} \circ \varphi) \circ \gamma, \\ &= (\psi \circ \varphi^{-1}) \circ (\varphi \circ \gamma). \end{split}$$

Since $\psi \circ \varphi^{-1}$ is continuous, continuity of $\varphi \circ \gamma$ implies continuity of $\psi \circ \gamma$.

Definition (Chart Transition Maps)

Let (M, τ) be a topological manifold of dimension n and let (U, φ) and (V, ψ) be charts on M such that $U \cap V \neq \emptyset$. The chart transition maps, or simply transition maps or transition functions, between (U, φ) and (V, ψ) are the maps

$$\varphi \circ \psi^{-1} \colon \psi(U \cap V) \to \varphi(U \cap V), \quad \psi \circ \varphi^{-1} \colon \varphi(U \cap V) \to \psi(U \cap V). \ \Leftrightarrow$$

Lemma

Let (M, τ) be a topological manifold of dimension n and let (U, φ) and (V, ψ) be charts on M such that $U \cap V \neq \emptyset$. The chart transition maps between (U, φ) and (V, ψ) are continuous.

N. Alves (IFUSP)

Adventure Is Out There

N. Alves (IFUSP)

Adventure Is Out There

Question How can we define differentiability of a curve? Issue Topology only deals with continuity, not differentiability

N. Alves (IFUSP)

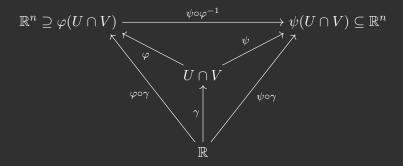
Adventure Is Out There

Question How can we define differentiability of a curve? Issue Topology only deals with continuity, not differentiability

Possible solution Define differentiability of $\gamma \colon \mathbb{R} \to M$ based on differentiability of $\varphi \circ \gamma : \mathbb{R} \to \varphi(U) \subseteq \mathbb{R}^n$, for some chart (U, φ) Issue What if we had another chart (V, ψ) ?

Possible solution Define differentiability of $\gamma \colon \mathbb{R} \to M$ based on differentiability of $\varphi \circ \gamma \colon \mathbb{R} \to \varphi(U) \subseteq \mathbb{R}^n$, for some chart (U, φ) Issue What if we had another chart (V, ψ) ?

The definition of differentiability should be chart-independent.



N. Alves (IFUSP)

Definition (C^k -compatible Charts)

Let (M, τ) be a locally Euclidean space. Let (U, φ) and (V, ψ) be charts on (M, τ) . The charts are said to be \mathcal{C}^k -compatible if, and only if, either of the following requirements hold:

1
$$U \cap V = \emptyset$$
;
2 $\varphi \circ \psi^{-1}$ and $\psi \circ \varphi^{-1}$ are of class \mathcal{C}^k .

Definition (C^k -atlas)

Let (M, τ) be a locally Euclidean space and let \mathcal{A} be an atlas on (M, τ) . \mathcal{A} is said to be a \mathcal{C}^k -atlas if, and only if, the charts on \mathcal{A} are pairwise \mathcal{C}^k -compatible. In particular, \mathcal{C}^∞ -atlases are commonly referred to as smooth atlases.

N. Alves (IFUSP)

Remark

In order to define differentiability, we are not adding structure. In fact, we are removing.

Definition (Maximal C^k -atlas)

Let (M, τ) be a topological manifold and let \mathcal{A} be a \mathcal{C}^k -atlas on (M, τ) . \mathcal{A} is said to be maximal if, and only if, for every \mathcal{C}^k -atlas \mathcal{A}' with $\mathcal{A} \subseteq \mathcal{A}$ it holds that $\mathcal{A} = \mathcal{A}'$. <u>A maximal \mathcal{C}^k -atlas on a topological manifold (M, τ) is also referred to as</u>

A maximal C^* -atlas on a topological manifold (M, τ) is also referred to as a \mathcal{C}^k -structure on (M, τ) . Once again, the $k = \infty$ case is referred commonly as "smooth" instead of \mathcal{C}^{∞} .

Definition (C^k -manifold)

Let (M, τ) be a locally Euclidean space and let \mathcal{A} be a \mathcal{C}^k -atlas on (M, τ) . The triple (M, τ, \mathcal{A}) is said to be a $\mathcal{C}^{[k]}$ -manifold. In particular, \mathcal{C}^{∞} -manifolds are commonly referred to as smooth manifolds.

Remark

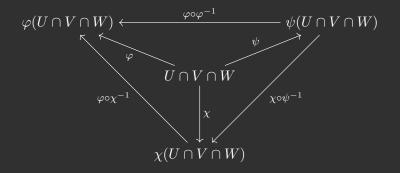
Every $C^{[k]}$ -manifold is a $C^{[l]}$ -manifold for $l \leq k$.

Lemma

Let (M, τ) be a locally Euclidean space and let \mathcal{A} be a \mathcal{C}^k -atlas on (M, τ) . Let (U, φ) and (V, ψ) be charts on (M, τ) . If both (U, φ) and (V, ψ) are compatible with the atlas \mathcal{A} , then they are compatible with each other. \Box

Proof

If $U \cap V = \emptyset$, the proof is complete. Let us then assume $U \cap V \neq \emptyset$. \mathcal{A} covers M, and therefore, given $p \in U \cap V$, there is some chart (W, χ) with $p \in W$. By hypothesis, (W, χ) is compatible with both (U, φ) and (V, ψ) .



N. Alves (IFUSP)

Adventure Is Out There

Proof

Since (W, χ) is compatible with both (U, φ) and (V, ψ) , we know that $\chi \circ \psi^{-1}$ is \mathcal{C}^k at $\psi(U \cap V \cap W)$ and $\varphi \circ \chi^{-1}$ is \mathcal{C}^k at $\chi(U \cap V \cap W)$. Hence, $\varphi \circ \psi^{-1}$ is \mathcal{C}^k at $\psi(U \cap V \cap W)$ and, in particular, at $\psi(p)$. Since $p \in U \cap V$ was arbitrary, we see that $\varphi \circ \psi^{-1}$ is \mathcal{C}^k at $\psi(U \cap V)$. A similar argument proves that $\psi \circ \varphi^{-1}$ is \mathcal{C}^k at $\varphi(U \cap V)$. Therefore, (U, φ) and (V, ψ) are \mathcal{C}^k -compatible.

Proposition

Let (M, τ) be a locally Euclidean space and let \mathcal{A} be a \mathcal{C}^k -atlas on (M, τ) . \mathcal{A} is contained on a unique maximal \mathcal{C}^k -atlas.

N. Alves (IFUSP)

Adventure Is Out There

Proof

Consider the set $\overline{\mathcal{A}}$ of all charts \mathcal{C}^k -compatible with \mathcal{A} . Notice that $\mathcal{A} \subseteq \overline{\mathcal{A}}$ and, as a consequence, $\overline{\mathcal{A}}$ is an atlas, for it is a collection of charts that covers M. We must now prove that it is a \mathcal{C}^k -atlas and that it is maximal.

Proof

Let $(U, \varphi), (V, \psi) \in \overline{\mathcal{A}}$. By hypothesis, both of them are \mathcal{C}^k -compatible with \mathcal{A} and thus are compatible with each other. Therefore, $\overline{\mathcal{A}}$ is a \mathcal{C}^k -atlas.

Proof

Suppose now \mathcal{A}' is a \mathcal{C}^k -atlas containing $\overline{\mathcal{A}}$. Notice $\mathcal{A} \subseteq \overline{\mathcal{A}} \subseteq \mathcal{A}'$. Thus, every chart (U, φ) in \mathcal{A}' is \mathcal{C}^k -compatible with \mathcal{A} . Thus, by definition of $\overline{\mathcal{A}}$, every chart (U, φ) of \mathcal{A}' is in $\overline{\mathcal{A}}$, *i.e.*, $\mathcal{A}' \subseteq \overline{\mathcal{A}}$. Therefore, $\overline{\mathcal{A}} = \mathcal{A}'$, proving $\overline{\mathcal{A}}$ is maximal.

N. Alves (IFUSP)

Adventure Is Out There

Proof

Finally, we must prove $\overline{\mathcal{A}}$ is unique. Suppose \mathcal{A}' is some \mathcal{C}^k -atlas with $\mathcal{A} \subseteq \mathcal{A}'$. Then every chart in \mathcal{A}' is compatible with \mathcal{A} and hence $\mathcal{A}' \subseteq \overline{\mathcal{A}}$, so either $\mathcal{A}' = \overline{\mathcal{A}}$ or \mathcal{A}' is not maximal. One way or the other, the proof is complete.

N. Alves (IFUSP)

Adventure Is Out There

When proving some topological space is a C^k -manifold, we do not need to bother with describing the whole maximal atlas. Instead, it suffices to find some atlas and the existence of a maximal atlas is guaranteed.

Remark

A result due to Hassler Whitney states that, for every k > 0, a maximal C^k -atlas contains a smooth atlas[7]. As a consequence, one is mostly interested on the theory of smooth manifolds.

Remark

The restriction $k \neq 0$ is important: there are examples of topological manifolds that do not admit a smooth structure. The first example[8] of such a manifold is a compact 10-dimensional manifold constructed by Michel Kervaire in 1960[6].

Example (Euclidean Space)

The first example of smooth manifold one might consider is \mathbb{R}^n itself, which is a Hausdorff, second-countable space. An atlas is given by $\{(\mathbb{R}^n, id)\}$, where id: $\mathbb{R}^n \to \mathbb{R}^n$ is the function that maps $x \mapsto x$.

Example (Locally Euclidean space which is not Hausdorff)

A simple example of a locally euclidean space which is not Hausdorff is the line with two origins: the real line with an extra point. We begin by picking some set which we already know to exist. As any set will do, let $\boldsymbol{\omega}$ denote a leaf. We write $X = \mathbb{R} \cup \{\boldsymbol{\omega}\}$.

Example (Locally Euclidean space which is not Hausdorff)

We now proceed to define a topology in X. Let $\mathfrak{B}_{\mathbb{R}}$ be the basis of open intervals for the standard topology in \mathbb{R} . Let $\mathfrak{B}_{\mathfrak{G}} \equiv \{\{\mathfrak{G}\} \cup B \setminus \{0\}; B \in \mathfrak{B}_{\mathbb{R}}\}$. We define $\mathfrak{B} \equiv \mathfrak{B}_{\mathbb{R}} \cup \mathfrak{B}_{\mathfrak{G}}$. \mathfrak{B} is a basis for a non-Hausdorff topology in X. On the other hand, every point p has an open neighbourhood which can be mapped with the identity (or with a quasi-identity $x \mapsto x$ for $x \neq \mathfrak{G}$ and $\mathfrak{G} \mapsto 0$) to \mathbb{R} . Thus, it is locally Euclidean.

Example (2-sphere)

The construction made on the beginning of this chapter can be used to prove that S^2 is a smooth manifold.

Definition (C^k Maps)

Let $(M, \tau_M, \mathcal{A}_M)$ and $(N, \tau_N, \mathcal{A}_N)$ be \mathcal{C}^k -manifolds with dim M = m and dim N = n and let $p \in M$. A map $f \colon M \to N$ is said to be of class \mathcal{C}^k at p if, and only if, there are charts $(U, \varphi) \in \mathcal{A}_M$ and $(V, \psi) \in \mathcal{A}_N$ with $p \in U$ and $f(U) \subseteq V$ such that $\psi \circ f \circ \varphi^{-1}$ is of class \mathcal{C}^k (in the sense of Real Analysis) at $\varphi^{-1}(p)$. The map f is said to be of class \mathcal{C}^k if, and only if, it is of class \mathcal{C}^k at p for

every $p \in M$. A \mathcal{C}^{∞} map is often called a *smooth map*.



N. Alves (IFUSP)

Adventure Is Out There

Proposition

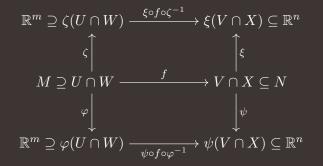
The notion of a C^k map between two C^k -manifolds is well-defined, i.e., it does not depend on the charts chosen.

Proof

Let $(M, \tau_M, \mathcal{A}_M)$ and $(N, \tau_N, \mathcal{A}_N)$ be \mathcal{C}^k -manifolds with $\dim M = m$ and $\dim N = n$ and let $p \in M$. Let $f \colon M \to N$ be a map and let there be are charts $(U, \varphi) \in \mathcal{A}_M$ and $(V, \psi) \in \mathcal{A}_N$ with $p \in U$ and $f(U) \subseteq V$ such that $\psi \circ f \circ \varphi^{-1}$ is of class \mathcal{C}^k (in the sense of Real Analysis) at $\varphi^{-1}(p)$. We want to show that if there are charts $(W, \zeta) \in \mathcal{A}_M$ and $(X, \xi) \in \mathcal{A}_N$ with $p \in W$ and $f(W) \subseteq X$ such that $\xi \circ f \circ \zeta^{-1}$ is of class \mathcal{C}^k (in the sense of Real Analysis) at $\zeta^{-1}(p)$.

Proof

Notice that $p \in U \cap W$ and $f(U \cap W) \subseteq V \cap X$. We are thus invited to consider the diagram



N. Alves (IFUSP)

Proof

The diagram then invites us to notice that

$$\xi \circ f \circ \zeta^{-1} = (\xi \circ \psi^{-1}) \circ (\psi \circ f \circ \varphi^{-1}) \circ (\varphi \circ \zeta^{-1}),$$

which, due to the fact that \mathcal{A}_M and \mathcal{A}_N are \mathcal{C}^k -atlases, is a composition of \mathcal{C}^k -maps in the sense of Real Analysis. Hence, $\xi \circ f \circ \zeta^{-1}$ is \mathcal{C}^k in $\zeta(U \cap W)$ and, in particular, in $\zeta(p)$, proving the result.

References

References I

- Alves, N. A Not So Brief Introduction to Topology. (Study notes). http://fma.if.usp.br/~nickolas/pdf/A_Not_So_Brief_ Introduction_to_Topology.pdf.
- Alves, N. Differential Geometry. (Study notes). http://fma.if. usp.br/~nickolas/pdf/Differential_Geometry.pdf.
- Alves, N. Hyperbolic Equations. (Study notes). http: //fma.if.usp.br/~nickolas/pdf/Hyperbolic_Equations.pdf.
- Barata, J. C. A. Notas de Física-Matemática. http://denebola. if.usp.br/~jbarata/Notas_de_aula/notas_de_aula.html.
- 5. Folland, G. B. *Real Analysis: Modern Techniques and Their Applications.* (Wiley, New York, 1999).
- 6. Kervaire, M. A Manifold Which Does Not Admit Any Differentiable Structure. *Commentarii Mathematici Helvetici* **34**, 257–570 (1960).

References II

- 7. Lee, J. *Manifolds and Differential Geometry.* (American Mathematical Society, Providence, Rhode Island, 2009).
- 8. Lee, J. Introduction to Smooth Manifolds. (Springer, New York, 2012).
- 9. Mac Lane, S. *Categories for the Working Mathematician.* (Springer, New York, 1978).
- **10**. Nakahara, M. *Geometry, Topology and Physics*. (Institute of Physics Publishing, Bristol, 2003).
- 11. Schuller, F. P. The Mathematics and Physics of Gravity and Light. (lecture course). https://www.youtube.com/playlist?list= PLFeEvEPtX_0S6vxxiiNPrJbLu9aK1UVC_.
- 12. Simon, B. A Comprehensive Course in Analysis, Part 1: Real Analysis. (American Mathematical Society, Providence, 2015).

References III

- 13. Solis, G. Paracompacidade. (Seminar notes).
- 14. Tao, T. Hilbert's Fifth Problem and Related Topics. (preliminary version). https: //terrytao.files.wordpress.com/2014/11/gsm-153.pdf (American Mathematical Society, Providence, Rhode Island, 2014)
- 15. Tu, L. An Introduction to Manifolds. (Springer, New York, 2011).

The End

N. Alves (IFUSP)

Adventure Is Out There

The End

N. Alves (IFUSP)

Adventure Is Out There