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Many of the problems in Electrostatics involve finding the electric potential satisfying Laplace’s
Equation and some boundary conditions. Sometimes, this task might be extremely challenging. The
present paper demonstrates a method using conformal mappings to solve two-dimensional electro-
statics problems by solving a simpler problem and mapping it to the original one.
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I. INTRODUCTION

In the present paper, we are dealing with two-
dimensional problems in Electrostatics. You might
think this is not a good idea, since our world is three-
dimensional, but allowme to remind you that there are
problems in three dimensions that can be reduced to
a two-dimensional problem. As an example, consider
the case of an infinite cylinderwithuniformchargeden-
sity. Even though it is three-dimensional, the problem
is symmetric in the cylinder’s symmetry axis and we
might regard it as a two-dimensional problem without
any loss of generality.
That being said, let us begin by recalling Maxwell’s

Equations: 

∇ · E =
ρ

ε0
,

∇ · B = 0,

∇× E = −
∂B
∂t
,

∇× B = µ0J+ µ0ε0
∂E
∂t
.

(1)

When dealing with Electrostatics, Maxwell’s Equa-
tions reduce to ∇ · E =

ρ

ε0
,

∇× E = 0.
(2)

We haven’t written the equations concerning mag-
netic fields due to the fact that we are not interested in
them when studying Electrostatics.
If it also holds that we are interested in a region on

space that is free of charge, then Maxwell’s Equations
become even more simple:{

∇ · E = 0,

∇× E = 0.
(3)
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Notice that the electric field doesn’t have to be iden-
tically zero even in this case, because other regions in
space couldhave anon-vanishing chargedensity. How-
ever, we are interested in finding fields on a region
respecting the absence of charges.

Notice as well that, since we are in two dimensions,
Eq. (3) can be written as

∂Ex

∂x
+
∂Ey

∂y
= 0,

∂Ey

∂x
−
∂Ex

∂y
= 0.

(4)

As afinal remarkbeforeweproperly start, one should
notice that the present theory is extremely similar, not
to say identical, to the theory of incompressible po-
tential flows in Fluid Mechanics. Some readers might
want to have a look at references [1–3], which explain
the same ideas in the context of Fluid Mechanics.

II. ELECTROSTATICS AND ANALYTIC FUNCTIONS

A. Electric Potential

When dealing with Electrostatics, the electric field is
always curl-less, i.e., ∇× E = 0. Thus, in two dimen-
sions, we have (in cartesian coordinates):

∂Ey

∂x
−
∂Ex

∂y
= 0. (5)

It then follows from the Helmholtz Theorem[4] that,
provided that ρ(r) vanishes sufficiently fast as r → ∞
and E → 0 as r → ∞, E is completely determined by
Eq. (2). Furthermore, it holds that

E = −∇V, (6)

for an electrostatic potential V(r) given by

V(r) = 1

4πε0

∫
ρ(r ′)
r dτ ′ , (7)
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where r = ‖rrr ‖ = ‖r− r ′‖. We shall also write r̂rr ≡ rrr
r

in the following sections.
One might find it weird that we are integrating ρ if

we are studying the electric field in the absence of any
charges. Nevertheless, even though we want to figure
out the field in a chargeless region, it doesn’t mean that
there are no charges on other regions of space.

The importance of this concept is that if we are able to
obtain the expression for V(r), the electric field (which
is the physical quantity we are interested in) is one
derivative away. This is certainly interesting, because
if once we were facing the challenge of calculating a
vector field, we now only have to find a scalar field
and differentiate in order to obtain the answer we are
looking for.

Finally, we note for further use that

V(r) = −

∫ r
r0
E(r ′) · dl ′ . (8)

For a proof of this expression, you might see [4, 5].

B. Field Lines

In space free of any charges, the electric field is diver-
genceless, i.e., ∇ · E = 0. Thus, we have the following
equation (in cartesian coordinates):

∂Ex

∂x
+
∂Ey

∂y
= 0. (9)

Suppose there was a function U(r) such that[1, 3]

Ex = −
∂U

∂y
, Ey =

∂U

∂x
. (10)

Then it follows that

∂Ex

∂x
+
∂Ey

∂y
= −

∂2U

∂x∂y
+
∂2U

∂y∂x
= 0, (11)

and the condition that ∇ · E = 0 is automatically sat-
isfied. Furthermore, if we knew U, we would be a
derivative away from E.

For now, we are going to focus on finding out wheter
U exists or not. After all, there would be no sense
to derive results about a function that does not exist.
Therefore, we are facing the problem of solving the
following partial differential equation system:

∂U

∂x
= Ey(x, y),

∂U

∂y
= −Ex(x, y),

(12)

where the functions Ex(x, y) and Ey(x, y) are known.
From the first equation in Eq. (12), we have

U(x, y) =

∫x
x0

Ey(x
′, y)dx ′ + f(y), (13)

for some arbitrary function f(y). If we differentiate Eq.
(13) with respect to y, we get

∂U

∂y
=

∫x
x0

∂Ey

∂y
dx ′ + f ′(y). (14)

By imposing the condition∇ · E = 0, it follows that

∂U

∂y
= −

∫x
x0

∂Ex

∂x ′
dx ′ + f ′(y),

= −Ex(x, y) + Ex(x0, y) + f
′(y). (15)

The second equation on Eq. (12) guarantees then that
f ′(y) = −Ex(x0, y). Integrating this ODE allows us to
conclude that

f(y) = −

∫y
y0

Ex(x0, y
′)dy ′ . (16)

Substituting this result in Eq. (13) gives us a final
expression forU up to the choice of arbitrary constants
x0 and y0:

U(x, y) =

∫x
x0

Ey(x
′, y)dx ′ −

∫y
y0

Ex(x0, y
′)dy ′ . (17)

Thus, there is indeed such a function U. But why
would such a function be interesting?

Notice that, if we regard U as a three-variable func-
tion constant with respect to z, then

Exx̂+ Eyŷ = −
∂U

∂y
x̂+ ∂U

∂x
ŷ,

= ẑ×∇U,
E = −∇U× ẑ. (18)

Since U is a two-variable function,∇U is orthogonal
to ẑ and lies in the xy-plane. The same goes to E, as
we can see from the cross-product in Eq. (18). We see
then that everywhere in the xy-plane E and ∇U are
orthogonal vectors. We also know, from multivariable
calculus, that∇U is always orthogonal to level curves
of U. However, since we are in two-dimensions, it
follows then that E is always parallel to such curves1[3].
Moreover, we now see that the constants x0 and y0

that appeared in Eq. (17) are related to which field line
is described by the curve U(x, y) = 0.

1 Ever heard that the enemy of my enemy is my friend? I guess it
holds in two dimensions, since the orthogonal to my orthogonal is
my parallel. The proverb fails in three dimensions though (e.g., x̂,
ŷ and ẑ).
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C. Complex Potential

We can now express E in two different manners:{
E = −∇V,
E = −∇U× ẑ.

(19)

Therefore, the following conditions hold for the func-
tions V and U associated to a certain electric field:

∂V

∂x
=
∂U

∂y
,

∂V

∂y
= −

∂U

∂x
.

Id est, the functions V and U satisfy the Cauchy-
Riemann Conditions for analytic functions[6].
If we take the derivatives with respect to both vari-

ables x and y of both equations in Eq. (20), we can
obtain with some algebra that{

∇2V = 0,

∇2U = 0,
(20)

and therefore both U and V are harmonic functions.
This seems useless, albeit curious. Can we achieve

anything new with such information?
In fact, yes, we can. I remind you of the following

theorems from complex calculus:

Theorem 1:
LetW(z) = V(x, y)+ iU(x, y) be a function for x+ iy =

z ∈ S ⊆ C. Suppose W ′(z0) exists for some z0 ∈ S, z0 =
x0 + iy0. Then the first partial derivatives of V and U exist
at z0 and satisfy the Cauchy-Riemann conditions (Eq. (20)).
Furthermore, the derivative ofW at z0 is given by

W ′(z0) =
∂V

∂x
+ i
∂U

∂x
, (21)

and, equivalently,

W ′(z0) =
∂U

∂y
− i
∂V

∂y
. (22)

�

Proof:
The derivative ofW at z0 is, by definition,

W ′(z0) = lim
z→z0

W(z) −W(z0)

z− z0
. (23)

We know[6] that limits in the complex plane can be
regarded as limits in R2 and as independent limits in
the real and imaginary parts. Furthermore, for a limit

inR2 to converge, it must have the same valuewhenwe
reach the limiting point through any curve. Since, by
hypothesis,W ′(z0) exists, we might choose any path to
calculate the limit. If we pick the path x = x0, while
varying y, we get

Re[W ′(z0)] = lim
y→y0

U(x0, y) −U(x0, y0)

y− y0
,

=
∂U

∂y
(x0, y0),

Im[W ′(z0)] = lim
y→y0

−
V(x0, y) − V(x0, y0)

y− y0
,

= −
∂V

∂y
(x0, y0),

(24)

A similar calculation with y = y0, varying x, yields

Re[W ′(z0)] = lim
x→x0

V(x, y0) − V(x0, y0)

x− x0
,

=
∂V

∂x
(x0, y0),

Im[W ′(z0)] = lim
x→x0

U(x, y0) −U(x0, y0)

x− x0
,

=
∂U

∂x
(x0, y0),

(25)

Since ∂V
∂x

(x0, y0) = Re[W ′(z0)] = ∂U
∂y

(x0, y0) and
−∂V
∂y

(x0, y0) = Im[W ′(z0)] =
∂U
∂x

(x0, y0), the Cauchy-
Riemann conditions are indeed satisfied. Furthermore,
Eq. (24) shows that

W ′(z0) =
∂U

∂y
− i
∂V

∂y
,

while Eq. (25) gives us

W ′(z0) =
∂V

∂x
+ i
∂U

∂x
,

proving the theorem. �

This shows us that the Cauchy-Riemann conditions
are necessary for a complex function to be differen-
tiable at some point. We might as well use them to
obtain a sufficient condition for a complex function to
be differentiable.

Theorem 2:
LetW(z) = V(x, y)+ iU(x, y) be a function for x+ iy =

z ∈ S ⊆ C. Let z0 ∈ S and let A ⊆ S be some neighborhood
of z0. Suppose that U and V are both differentiable with re-
spect to both x and y inA, these derivatives being continuous
at z0. Then, if the Cauchy-Riemann conditions are met at
z0,W ′(z0) exists. �
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For the proof of this theorem, see [6].
In general, the electric field is continuous in free

space, i.e., when charges are absent. Thus, the deriva-
tives of U and V exist and are continuous at every
point we are currently interested, and thus W(z) =
V(x, y)+ iU(x, y) is differentiable at every point we are
interested. Youmight recall from complex calculus that
functions that are differentiable on a neighborhood of
a point z0 are said to be analytic at z0. Thus W is an
analytic function on the regions we are interested.

Concerning Electrostatics, we see now that it might
be interesting to define a complex field[5] E = Ex− iEy
and make good use of the fact that

E = −W ′(z). (26)

However, notice one more thing: we could also have
picked −U instead of U, changing only the signs in ev-
ery expression and leading us to the complex potential
W1(z) = −U(x, y)+ iV(x, y), reversing whetherU or V
is the real (imaginary) component ofW. Since both U
and V always respect Laplace’s Equation, any of them
can stand for the electric potential and any of them can
stand for the field lines. Thus, obtaining a single com-
plex potential solves two problems at once: the one in
which V is the electric potential and the one in which
U is the electric potential.

Of course, althoughwehave built the complex poten-
tial in cartesian coordinates, we could also have done
it in polar coordinates. The expressions would simply
be[1]: 

Er = −
∂V

∂r
= −

1

r

∂U

∂θ
,

Eθ = −
1

r

∂V

∂θ
=
∂U

∂r
.

(27)

III. SOME EXAMPLES

Now that we have some idea about how our the-
ory looks like, we should give some examples; espe-
cially considering that this could give us information
on some simple potentials that could be combined to
solve harder problems. For example, we are able to
describe the potential of a charge under an uniform
electric field by simply adding both potentials. As we
shall see, this can quickly become a powerfull tool.

A. Uniform Electric Field

Suppose we want to describe a uniform electric field
E = Exx+ Eyy, where Ex and Ey are both constants.

Solving the PDEs given in Eq. (19) (or using Eqs.
(7) and (17)) we obtain, up to an arbitrary constant of
integration[1], {

V(x, y) = −Exx− Eyy;
U(x, y) = Eyx− Exy,

(28)

and thus

W(z) = −Ez. (29)

We could, of course, leave the arbitrary constant of
integration explicitly on the expression for the poten-
tial. However, it would vanish as soon as we take a
derivative in order to get the electric field (which is
the quantity we are actually interested). Therefore, the
integration constant is superfluous.
The electric potential and the field lines for this con-

figuration are shown in Figure 1.
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y

Uniform Electric Field

Figure 1. Electric potential and field lines for an uniform
electric fieldE = 5x̂+ 2ŷ. The orange lines are the level curves
for the electric potential, while the blue lines represent the
field lines.

B. Quadrupole

Lets now examine another approach: given an ana-
lytic function, we want to examine what is the physical
problem described by it.
Consider the function[5] W(z) = −1

2
z2. Through
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some algebra, you can find out that

V(x, y) = −
1

2

(
x2 − y2

)
;

U(x, y) = −xy.
(30)

Thus, we see that the equipotentials are hyperbolas,
and the same goes to the field lines (though they are
different hyperbolas).
Plotting the equipotentials and field lines, we obtain

Figure 2. If you pay atention, you will realize this field
corresponds to the one generated by a quadrupole con-
figuration. We might then pick some equipotentials
and regard them as the boundary of charged conduc-
tors responsible for the creation of such a field[5]. After
all, the real problem involves the presence of such con-
ductors and they are indeed equipotentials[4].
Nevertheless, there is an important remark to be

made about this description. As soon as we pick an
equipotential as the boundary of a conductor, the in-
terior of such conductor is no longer described by our
potential. Indeed, conductors are equipotentials as a
whole, not only on their surfaces, and the potential
we found is not constant on the inside of the conduc-
tor. It describes the physics observed on the outside of
the conductor, where space is free of charge up to its
boundary, but the description ends there.
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Quadrupole Electric Field

Figure 2. Electric potential and field lines for a quadrupole
E = xx̂− yŷ. The orange lines are the level curves for the
electric potential, while the blue lines represent the field lines.

C. Heaviside Step Function

Let us now consider the function given by W(z) =
− i
π
log z. Using the polar form of complex numbers,

z = reiθ, we have thatW(z) = −i 1
π
log r + 1

π
θ. There-

fore, 
V(r, θ) = +

1

π
θ;

U(r, θ) = −
1

π
log r.

(31)

Letx ∈ R. For x < 0, we see thatV(x, 0) = 1, while for
x > 0 we have V(x, 0) = 0. Thus, this potential solves
a boundary value problem similar to Heaviside’s step
function. Actually, V(x, 0) = H(−x), where H stands
for Heaviside’s step function.

The equipotentials and field lines are plotted in Fig-
ure 3.
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Heaviside Step Function Electric Field

Figure 3. Electric potential and field lines for boundary value
problem with V(x, 0) = H(−x), whereH denotes Heaviside’s
step function. The orange lines are the level curves for the
electric potential, while the blue lines represent the field lines.

To be completely fair, either the logarithm is analytic
in all C or it is a function. Choose one. The reason
for this is, essentially, that z = reiθ = rei(θ+2π), and
thus the complex logarithm is not single-valued. We
must then choose a branch (i.e., a restrained range) for
the logarithm to be analytic. Usually we give up the
negative real axis, since we didn’t have it in the real
case. However, for our problem, we could simply pick
a branch that is cut at the negative y values, so we keep
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analyticity on the upper half-plane. After all, a bird in
the hand is worth two in the bush, and in this way our
problem is solved for the upper half-plane.

IV. CONFORMALMAPPINGS

Even though it is really cool to write the potentials
and field line functions, it certainly isn’t so clear yet
what is so great about analytic functions and the com-
plex potential. Ok, we could solve some problems ac-
cidentally by differentiating analytic functions at ran-
dom, but did we gain anything with this new strategy?

What is actually really powerful about analytic func-
tions is that they generate conformal mappings in C.
This is fancy language for saying that they preserve an-
gles of intersectionwhenwe apply them to the complex
plane as a whole[5].

For example, suppose we have some equipotentials
and field lines on the complex plane. We already know
they always intersect at right angles (this follows from
Eq. (19) and the fact that gradients are always orthog-
onal to level curves). If we map the complex plane
into itself (or into another copy of the complex plane, if
you’d rather think this way) with a conformal map, the
mapped curves would still be crossing at right angles.
Essentially, they preserve the local form of the space.
Hence, conformal[1, 5].

Formally, we say that a mapping is conformal at a
certain pointwhenever it preserves both themagnitude
and sense of the angle between any two smooth arcs
crossing each other at that point[6].

Great, but what does this has to do with analytic
functions? Well, as I said before, analytic functions are
conformalmappings. Or, strictly speakig, the following
theorem holds[6]:

Theorem 3:
Let f : S ⊆ C→ C be an analytic function at a point z0 ∈

S. Then, if f ′(z0) 6= 0, the map w = f(z) is conformal. �

Proof:
Let C be a smooth arc2 passing through z0 and

parametrically represented by z(t) = x(t) + iy(t), for
a 6 t 6 b. Then the image of C through f, lets call it Γ ,
is parametrically represented by w(t) = f[z(t)], again

2 A setC of points in the complex plane is said to be an arcwhen we
can describe it parametrically it as z(t) = x(t)+ iy(t), where x
and y are continuous functions of the real parameter t ∈ [a,b].
An arc is said to be smoothwhen z(t) is continuously differentiable
in [a,b] and z ′(t) 6= 0,∀ t ∈ [a,b].

Figure 4. In blue, the tangent z ′(t) to a smooth arc z(t) (or-
ange). Notice that the blue vector is just a complex number
and the angle it makes with the horizontal (green) is this
number’s argument.

for a 6 t 6 b. The chain rule guarantees that

w ′(t) = f ′[z(t)] · z ′(t). (32)

Thus, since f ′(z0) 6= 0, Γ is also a smooth arc, at least on
a neighborhood of z0.
If we consider both sides of Eq. (32) in their polar

form, we know them both must have the same argu-
ment, i.e.,

argw ′(t) = arg f ′[z(t)] + arg z ′(t). (33)

However, arg z ′(t) is the angle thatCmakes with the
x-axis at the point z(t)! This might become a bit clearer
if you think in R2 (and, perhaps, take a look at Figure 4
to help your reasoning): if we have a parametric curve
in R2, its derivative at a point is the vector tangent to
the curve at that point. Well, inC this vector is precisely
a complex number, which we may represent in either
cartesian coordinates or polar coordinates. In its polar
form, the angle that the vector (and thus the curve)
makes with the horizontal axis is simply the vector’s
argument. Hence the statement.
Let φ0 ≡ argw ′(t0), ψ0 ≡ arg f ′[z(t0)] and θ0 ≡

arg z ′(t0), where t0 is such that z0 = z(t0). Of course
φ0 = ψ0 + θ0 (this is just a special case of Eq. (33)).
Thus, the smooth arc was simply locally rotated by
ψ0. The argument applies to every smooth arc passing
through z0, i.e., every smooth arc passing through z0
is rotated by the exact same amount and in the same
direction. Thus, the angle atwhich their images cross at
the point f(z0) is equal, in bothmagnitude and sense, to
the angle at which the original arcs crossed each other
at the point z0. �

When I say the sense of the angle is preserved, I mean
that the two curves can’t “change roles”. They are sim-
ply rotated, not reflected. For example, in Figure 4,
suppose that the angle between the green line and the
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orange curve (or the blue tangent vector, equivalently)
is α when we count it counterclockwise starting from
the green line. The transformation preserves the an-
gle’smagnitude and sensewhen, after transforming the
curves, the angle between both curves is still α when I
still count it counterclockwise starting from the green
line. If I had to start from the orange line, or count in
clockwise, the sense would not have been preserved3.
Again, this is all great. But why is it useful?
Suppose you are facing a particularly difficult two-

dimensional problem. You know you can solve it if you
find the complex potential (or simply the electric po-
tential, or even the field line function), but that doesn’t
mean it is easy to find that potential. However, sup-
pose you can map that difficult problem conformally
to a simple one. Now you just gotta solve the simple
problem, reverse the mapping and voilà: you have the
complex potential for the tricky problem[5]!
So here’s our plan: first of all, pick your problem.

We’ll say it is in the ζ = χ + iη space, where the po-
tentials are φ (electric potential), ψ (field lines) and
ω(ζ) = φ(χ, η) + iψ(χ, η) is the complex potential.
Suppose you can use some conformal mapping f to
map this space into another space that makes the prob-
lem easier to solve. We shall write it z = f(ζ). We
find the complex potential W(z) = V(x, y) + iU(x, y)
in this simple space and then pull everything back:
ω(ζ) =W(f(ζ)).
Perhaps you are wondering: why the hell would this

work? In principle, it doesn’t need to. However, if
we define ω through the expression ω(ζ) = W(f(ζ)),
it follows that ω is an analytic function and thus it
is a complex potential in the ζ space. Thus, it solves
some electrostatic problem over there. If we can get the
boundary conditions just right, then the uniqueness of
solution to Laplace’s Equation[4] guaranteeswe got the
right solution.

A. Bending a Plane

Just to be sure we are getting things right, lets start
with some problem we can solve through some other
method so we know our solution is correct. Suppose
we have two infinite uniformly charged planes crossing
each other at a right angle. We want to find the electric
field at some point outside of both planes.

3 Some maps might preserve the angle’s magnitude, while not pre-
serving it’s sense. For an example, the mapw = z preserves the
angle’smagnitude, but not its sense. Suchmaps are called isogonal
mappings[6].
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Crossing Planes Electric Field

Figure 5. Field lines (blue) and equipotentials (orange) for
two orthogonal infinite planes with uniform charge σ = 2ε0.

Due to Gauss’s Law, we know that the field due to an
infinite uniformly charged plane resting in the xz-plane
is given by

E(r) = σ

2ε0

y

|y|
ŷ (34)

where σ stands for the plane’s surface charge density.
If we have another identical plane resting at the yz-

plane, then the resulting field due to both planes is, due
to the Superposition Principle,

E(r) = σ

2ε0

(
x

|x|
x̂+ y

|y|
ŷ
)
. (35)

The electric potential is given by

V(x, y) = −
σ

2ε0
(|x|+ |y|) . (36)

Both the field lines and equipotentials are shown in
Figure 5.

This would be the usual solution for the problem.
However, we want to test our conformal plan. Instead
of trying to solve the problem on all space, lets pick
something slightly easier: just a quarter. It makes sense
to try this strategy: the solution we found through
Gauss’s Law isn’t analytic when x or y is zero (and
there’s charge over there!). However, if we have simply
a corner, we can rotate it, reflect it and use the Superpo-
sition Principle to recreate the two intersecting planes.
This is our “difficult” space, ζ.
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Lets then start with an uniform field, to which the
potential is given by W(z) = −E0z (Eq. (29)), where
both z and E0 are complex numbers. We will pick a
plane orthogonal to the y axis, and thusW(z) = iEyz.
Now the equipotentials are curveswithV(x, y) = −Eyy
constant, and thus we might pick the horizontal plane
y = 0 as the charged plane generating the field. In
doing this, we are giving up on the lower half-plane,
because it is no longer physical (notice that the field
lines over there point towards the charged plane, in-
stead of being repelled by it). This space is the “easy”
space, z, in which we already know how to solve the
potential problem.

We want to bend this plane into a π
2
radians corner,

which is the hard problem. I claim that the function
z = f(ζ) = ζ2 (which is analytic!) does the job.

Indeed, let ζ = iη, η ∈ R+. Then z = f(ζ) = (iη)2 =
−η2. Since η ∈ R, η2 > 0 and −η2 ∈ R−. Furthermore,
if we let ζ = χ ∈ R+, f(ζ) = χ2 ∈ R+. Thus, fmaps the
difficult corner problem into the easy plane one.

Last step: ω(ζ) = W(f(ζ)) = W(ζ2). Therefore, we
have

ω(ζ) = iEyζ
2. (37)

For our problem, we might pick Ey = σ
4ε0

. We are
going to superpose more corners afterwards, and thus
we should now pick just half of the final charge. There-
fore,

ω(ζ) = i
σ

4ε0
ζ2. (38)

The complex electric field is given by E = −ω ′(ζ).

E =
σ

2e
η− i

σ

2e
χ. (39)

The solutions for the field lines and electric potential
obtained through this method are plotted in Figure 6.
As you can see, the solution doesn’t seem so be similar
to what we found through Gauss’s Law.

However, remember that we were not solving the
same problem. We used Gauss’s Law to solve the prob-
lem of crossing infinite planes, but we used conformal
maps to solve the problem of a charged corner. Fur-
thermore, we always knew our solution was going to
be physical only for χ, η > 0, because that’s where we
mapped the physical solutions for the simple problem
(below the chargedplane in the simple problem, the po-
tential means nothing for a physicist). Thus, if we want
to get the solution to crossing planes, we still have to
compute what happens outside of the corner.
Curiously, we can use the very same simple problem,

just map it in another way. In general, conformal map-
pings of the form f(ζ) = aζk can solve pretty much

10 5 0 5 10
10

5

0
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Figure 6. Field lines (blue) and equipotentials (orange) for
the bent plane. Although the solution for χ, η > 0 seems
something like the solutions we got for the crossing planes
through Gauss’s Law, it is not what we expected. We can’t
forget that this problem is not the same problem, and the
region outside χ, η > 0 is non-physical for this solution.

any corner/wedge problem[1], and that’s exactly how
we are going to face the problem of finding the electric
field outside of the conducting corner.
Now we need to find a conformal map that leaves us

just the portion of the complex plane that has at least
one coordinate with a negative value. If we can map
the upper complex plane (which is the physical portion
of our simple problem) into any three-quarters of the
complex plane, we can then simply rotate what we got
and we will be done.
Ifwe simply takepowers of a complexnumber,weare

making rotations in the complex plane. Moreover, pos-
itive real numbers do not rotate at all (their argument is
0). Since we need to map three-quarters of the complex
plane into the upper half, a nice guesswould be to leave
the fourth quarter outside of the game and try rotating
the plane clockwise, until the negative imaginary axis
coincides with the negative real axis.
Therefore, we are looking for a function of the form

z = f(ζ) = ζk such that ζ = −iη, η ∈ R+ gets mapped
to some point −x, x ∈ R+. Using the polar form of
complex numbers, we see that such a transformation
must satisfy:

z = reiπ = |ζ|
k
e
3ikπ
2 = ζk. (40)

Thus, we see that iπ = 3ikπ
2

and it follows that
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k = 2
3
, giving us the transformation f(ζ) = ζ

2
3 . How-

ever, don’t forget we had to rotate the plane so the
pieces would fit and the non-physical region of this
mapping would be on the first quarter (then we can
simply stick both solutions together and get the fi-
nal result). Since currently the non-physical region
is in the fourth quarter, we must rotate the complex
plane by π

2
radians counterclockwise and then bend the

plane. Such a rotation is described by the transforma-
tion z = g(ζ) = e−iπ2 ζ = −iζ. Our final transformation
is then just the composition of both these transforma-
tions, i.e.

z = f(ζ) = (−iζ)
2
3 . (41)

Lets check: pick ζ = iη, η ∈ R+.

f(ζ) = (−i · iη)
2
3 ,

= η
2
3 (42)

Pick now ζ = χ ∈ R+.

f(ζ) = (−iχ)
2
3 ,

=
(
e
3π
2 χ

) 2
3

,

= −χ
2
3 ,

(43)

This function maps positive real numbers into nega-
tive real numbers and positive imaginary numbers into
positive real numbers, exactly aswe needed. The upper
half-plane is mapped to all the complex-plane, except
the first quarter (which we already have). Thus, we can
now find the complex potential:

ω(ζ) =W(f(ζ)),

= i
σ

4ε0
f(ζ),

= −i
σ

4ε0
ζ
2
3 . (44)
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