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Summary

1 It’s still the same old story
Where we look at our theory so far

2 A fight for love and glory
When it is time for an update

3 A case of do or die
Where we take another point of view

4 The world will always welcome lovers
Where we find the couple of retarded potentials

5 As time goes by
Where we find Jefimenko’s Equations
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It’s still the same old story Where we look at our theory so far

Helmholtz Theorem

Theorem (Informal)
If the divergence (∇ · F)(r) and the curl (∇× F)(r) of a vector function
F(r) are specified, and if they both go to zero faster than 1/r2 as r → ∞,
and if F(r) goes to zero as r → ∞, then F is given uniquely by

F = −∇U +∇×W,

where U and W are given by

U(r) ≡ 1

4π

∫
(∇ · F)(r′)
∥r− r′∥

dτ ′ , W(r) ≡ 1

4π

∫
(∇× F)(r′)

∥r− r′∥
dτ ′ .
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It’s still the same old story Where we look at our theory so far

Not Helmholtz Theorem

Not-a-Theorem
Let E be a curl-less field and let B be a divergenceless field. Then we may
write them as

E = −∇V, B = ∇×A

where V and A are given by

V (r) ≡ 1

4π

∫
(∇ ·E)(r′)

∥r− r′∥
dτ ′ , A(r) ≡ 1

4π

∫
(∇×B)(r′)

∥r− r′∥
dτ ′ .
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It’s still the same old story Where we look at our theory so far

Static potentials

Curl-less electric field
∇×E = 0

Static potential
E = −∇V

V (r, t) =
1

4πϵ0

∫
ρ(r′, t)

∥r− r′∥
dτ ′

Divergenceless magnetic field
∇ ·B = 0

Vector potential
B = ∇×A

A(r, t) =
µ0

4π

∫
J(r′, t)

∥r− r′∥
dτ ′
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A fight for love and glory When it is time for an update

Maxwell’s Equations

In the beginning, God said


∇ ·E =
ρ

ϵ0
∇ ·B = 0

∇×E = −∂B

∂t

∇×B = µ0J+ µ0ϵ0
∂E

∂t

(1)
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A fight for love and glory When it is time for an update

Dynamic potentials

B keeps being divergenceless
B = ∇×A

Faraday and Helmholtz can be friends

∇×E = −∂B

∂t

∇×E = − ∂

∂t
(∇×A)

∇×
(
E+

∂A

∂t

)
= 0

E = −∇V − ∂A

∂t
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A fight for love and glory When it is time for an update

A new PDE

Bringing Gauss’ Law into the game

∇ ·E =
ρ

ϵ0
, E = −∇V − ∂A

∂t

You’ve unlocked a new equation!

∇2V +
∂

∂t
(∇ ·A) = − ρ

ϵ0
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A fight for love and glory When it is time for an update

Another new PDE

Bringing Ampère-Maxwell’s Law into the game

∇×B = µ0J+ µ0ϵ0
∂E

∂t
, E = −∇V − ∂A

∂t
, B = ∇×A

Time for some hard work

∇× (∇×A) = µ0J− µ0ϵ0
∂

∂t

(
∇V +

∂A

∂t

)
∇× (∇×A) = µ0J− µ0ϵ0∇

(
∂V

∂t

)
− µ0ϵ0

∂2A

∂t2
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A fight for love and glory When it is time for an update

Another new PDE

Time for some hard work
∇× (∇×A) = µ0J− µ0ϵ0∇

(
∂V
∂t

)
− µ0ϵ0

∂2A
∂t2

Vector calculus identity
∇× (∇× F) = ∇(∇ · F)−∇2F

Now more hard work

∇(∇ ·A)−∇2A = µ0J− µ0ϵ0∇
(
∂V

∂t

)
− µ0ϵ0

∂2A

∂t2

∇(∇ ·A) +∇
(
µ0ϵ0

∂V

∂t

)
−∇2A+ µ0ϵ0

∂2A

∂t2
= µ0J
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A fight for love and glory When it is time for an update

Another new PDE

You’ve unlocked a new equation!

∇(∇ ·A) +∇
(
µ0ϵ0

∂V

∂t

)
−∇2A+ µ0ϵ0

∂2A

∂t2
= µ0J

∇
(
∇ ·A+ µ0ϵ0

∂V

∂t

)
−
(
∇2A− µ0ϵ0

∂2A

∂t2

)
= µ0J(

∇2A− µ0ϵ0
∂2A

∂t2

)
−∇

(
∇ ·A+ µ0ϵ0

∂V

∂t

)
= −µ0J
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A fight for love and glory When it is time for an update

Electrodynamics written with potentials

In the beginning, God said

∇2V +

∂

∂t
(∇ ·A) = − ρ

ϵ0(
∇2A− µ0ϵ0

∂2A

∂t2

)
−∇

(
∇ ·A+ µ0ϵ0

∂V

∂t

)
= −µ0J

(2)
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A case of do or die Where we take another point of view

Thinking outside the box

Galilean Transformations
In Classical Mechanics, we may choose a reference system:

Spatial translations
Time translations
Rotations
Boosts

What are our freedoms?
Can we choose a “reference system” in Electrodynamics?
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A case of do or die Where we take another point of view

Thinking outside the box

The potentials are not unique
Let A′ := A+ a and V ′ := V + b. Then

B = ∇×A = ∇×A′ ⇒ ∇× a = 0

E = −∇V − ∂A
∂t = −∇V ′ − ∂A′

∂t ⇒ ∇b+ ∂a
∂t = 0

a = ∇λ

∇b+ ∂a
∂t = ∇

(
b+ ∂λ

∂t

)
= 0

b = −∂λ
∂t + κ(t)

We may let κ(t) be part of λ
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A case of do or die Where we take another point of view

Gauge freedom

There is symmetry in the potentials!
A′ = A+∇λ

V ′ = V − ∂λ

∂t

(3)

We may choose the value of ∇ ·A
∇ ·A′ = ∇ ·A+∇2λ
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A case of do or die Where we take another point of view

Coulomb gauge

Choosing the gauge
∇ ·A = 0

In the beginning, God said

∇2V = − ρ

ϵ0(
∇2A− µ0ϵ0

∂2A

∂t2

)
− µ0ϵ0∇

(
∂V

∂t

)
= −µ0J

(4)
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A case of do or die Where we take another point of view

Lorenz gauge

Choosing the gauge
∇ ·A = −µ0ϵ0

∂V
∂t

In the beginning, God said

∇2V − µ0ϵ0

∂2V

∂t2
= − ρ

ϵ0

∇2A− µ0ϵ0
∂2A

∂t2
= −µ0J

(5)
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The world will always welcome lovers Where we find the couple of retarded potentials

Reviewing the potentials

What do we have so far?

How to calculate the static potentials
The information travels at a speed c = 1√

µ0ϵ0

Imagination

Could we calculate the present potentials with retarded times?

tr = t− R

c
, R ≡

∥∥r− r′
∥∥
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The world will always welcome lovers Where we find the couple of retarded potentials

Resolution proposal

Static potentials

V (r, t) =
1

4πϵ0

∫
ρ(r′, t)

R
dτ ′ , A(r, t) =

µ0

4π

∫
J(r′)

R
dτ ′

Dynamic potentials

V (r, t) =
1

4πϵ0

∫
ρ(r′, t− R

c )

R
dτ ′ , A(r, t) =

µ0

4π

∫
J(r′, t− R

c )

R
dτ ′
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The world will always welcome lovers Where we find the couple of retarded potentials

Can it solve the wave equation?

Riemann’s proof (for the scalar potential)

Let V = V1 ⊔ V2, where V is the volume in which we integrate and
r ∈ V1

Let V1 and V2 be the “partial potentials”, i.e.,

Vi(r, t) =
1

4πϵ0

∫
Vi

ρ(r′, t− R
c )

R
dτ ′

Notice that V = V1 + V2
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The world will always welcome lovers Where we find the couple of retarded potentials

Can it solve the wave equation?

Riemann’s proof (for the scalar potential)

Let V1 be very small. Then

ρ

(
r′, t− R

c

)
→ ρ(r′, t)

V1(r, t) =
1

4πϵ0

∫
V1

ρ(r′, t)

R
dτ ′

V1 is the static potential! Therefore,

∇2V1 = − ρ

ϵ0
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The world will always welcome lovers Where we find the couple of retarded potentials

Can it solve the wave equation?

Laplacian in spherical coordinates

∇2ξ =
1

r2
∂

∂r

(
r2

∂ξ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂ξ

∂θ

)
+

1

r2 sin2 θ

∂2ξ

∂ϕ2

Riemann’s proof (for the scalar potential)

R = ∥r− r′∥ is spherically symmetric around a fixed r′

ρ
(
r′, t− R

c

)
/R must be as well

The Laplacian gets simplified!
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The world will always welcome lovers Where we find the couple of retarded potentials

Can it solve the wave equation?

Riemann’s proof (for the scalar potential)

The Laplacian gets simplified!

∇2
( ρ

R

)
=

1

R2

∂

∂R

(
R2 ∂

∂R

( ρ

R

))
=

1

R2

∂

∂R

(
R

∂ρ

∂R
− ρ

)
=

1

R2

(
R

∂2ρ

∂R2
+

∂ρ

∂R
− ∂ρ

∂R

)
=

1

R

∂2ρ

∂R2
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The world will always welcome lovers Where we find the couple of retarded potentials

Can it solve the wave equation?

Riemann’s proof (for the scalar potential)

Back to the potentials, we can see that

∇2V2 =
1

4πϵ0

∫
V2

∇2

(
ρ
(
r′, t− R

c

)
R

)
dτ ′

=
1

4πϵ0

∫
V2

1

R

∂2

∂R2
ρ

(
r′, t− R

c

)
dτ ′

However, a function of the form u(t− R
c ) satisfies the

one-dimensional wave equation

∂2u

∂R2
− 1

c2
∂2u

∂t2
= 0
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The world will always welcome lovers Where we find the couple of retarded potentials

Can it solve the wave equation?

Riemann’s proof (for the scalar potential)

Luckily, ρ
(
r′, t− R

c

)
has this form! Therefore,

∂2ρ

∂R2
− 1

c2
∂2ρ

∂t2
= 0

We see now that

∇2V2 =
1

4πϵ0c2

∫
V2

1

R

∂2

∂t2
ρ

(
r′, t− R

c

)
dτ ′
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The world will always welcome lovers Where we find the couple of retarded potentials

Can it solve the wave equation?

Riemann’s proof (for the scalar potential)

With some mathematical mambo jambo we get that

∇2V2 =
1

4πϵ0c2

∫
V2

1

R

∂2

∂t2
ρ

(
r′, t− R

c

)
dτ ′

=
1

c2
∂2

∂t2
1

4πϵ0

∫
V2

ρ
(
r′, t− R

c

)
R

dτ ′

=
1

c2
∂2V2

∂t2
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The world will always welcome lovers Where we find the couple of retarded potentials

Can it solve the wave equation?

Riemann’s proof (for the scalar potential)

Finally, if we let V1 → 0, then V2 → V and it will follow that

∇2V2 =
1

c2
∂2V

∂t2

We already know that
∇2V1 = − ρ

ϵ0

Let’s add them up!

∇2V1 +∇2V2 = ∇2V1 + V2 =
1

c2
∂2V

∂t2
− ρ

ϵ0
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The world will always welcome lovers Where we find the couple of retarded potentials

Can it solve the wave equation?

Riemann’s proof (for the scalar potential)

Through this process, we finally get that, indeed,

∇2V − 1

c2
∂2V

∂t2
= − ρ

ϵ0

The proof for A is analogous
The argument also holds for ta = t+ R

c
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As time goes by Where we find Jefimenko’s Equations

Why care about checking?

Intuition seems to fail for the electromagnetic fields

E(r, t) ̸= 1

4πϵ0

∫
ρ
(
r′, t− R

c

)
R2

R̂ dτ ′

B(r, t) ̸= µ0

4π

∫
J
(
r′, t− R

c

)
× R̂

R2
dτ ′

What did we do wrong?
“Where physical intuition can’t go, we bring math, i.e., we bring math
almost everywhere.”
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As time goes by Where we find Jefimenko’s Equations

Retracing our steps

What did we do right?

Express the potentials in the Lorenz gauge
Find the source terms in the wave equations
Use the knowledge that information propagates at a speed c

“Solve” the inhomogeneous three-dimensional wave-equation and
pretend we didn’t notice
Fix the static case
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As time goes by Where we find Jefimenko’s Equations

Electromagnetic waves

Exercise
Use Maxwell’s Equations and the following identity

∇× (∇× F) = ∇(∇ · F)−∇2F

to prove that 
∇2E− 1

c2
∂2E

∂t2
=

∇ρ

ϵ0
+ µ0

∂J

∂t

∇2B− 1

c2
∂2B

∂t2
= −µ0∇× J

(6)
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As time goes by Where we find Jefimenko’s Equations

Back to intuition

Same equation, same rules
The solutions to the wave equations should be (and are, indeed)

E(r, t) = − 1

4πϵ0

∫
(∇ρ)

(
r′, t− R

c

)
R

dτ ′ − µ0

4π

∫
1

R

∂

∂t
J

(
r′, t− R

c

)
dτ ′

B(r, t) =
µ0

4π

∫
(∇× J)

(
r′, t− R

c

)
R

dτ ′

(7)
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As time goes by Where we find Jefimenko’s Equations

The Road to E-dorado

Rewriting (∇ρ) (r′, tr)

∇′ρ(r′, tr) = (∇ρ) (r′, tr) +
∂ρ

∂t
∇′tr

= (∇ρ) (r′, tr) +
∂ρ

∂t
∇′
(
t− R

c

)
= (∇ρ) (r′, tr) +

1

c

∂ρ

∂t
R̂
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As time goes by Where we find Jefimenko’s Equations

The Road to E-dorado

Notation
From now on, we will write ⌊χ⌋ to denote χ(r′, tr), i.e., ⌊χ⌋ denotes the
retarded χ

Substituting in E

E(r, t) = − 1

4πϵ0

∫
⌊∇ρ⌋
R

dτ ′ − µ0

4π

∫ ⌊
J̇
⌋

R
dτ ′

=
1

4πϵ0

∫ −⌊∇′ρ⌋
R

+
⌊ρ̇⌋
cR

R̂−

⌊
J̇
⌋

c2R

dτ ′
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As time goes by Where we find Jefimenko’s Equations

The Road to E-dorado

Stokes’ Theorem ∫
V
∇T dτ =

∮
∂V

T dS

Back to the gradient

∫
V

⌊∇′ρ⌋
R

dτ ′ =

∫
V

[
∇′
(
⌊ρ⌋
R

)
− ⌊ρ⌋∇′

(
1

R

)]
dτ ′

=

∮
∂V

⌊ρ⌋
R

dS′ −
∫
V
⌊ρ⌋∇′

(
1

R

)
dτ ′
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R
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As time goes by Where we find Jefimenko’s Equations

The Road to E-dorado

Back to the gradient
∫
V

⌊∇′ρ⌋
R

dτ ′ =

∮
∂V

⌊ρ⌋
R

dS′ −
∫
V
⌊ρ⌋∇′

(
1

R

)
dτ ′

Since the integration is carried over all space and the charges vanish when
r → ∞, it follows that ∮

∂V

⌊ρ⌋
R

dS′ = 0∫
⌊∇′ρ⌋
R

dτ ′ = −
∫

⌊ρ⌋∇′
(
1

R

)
dτ ′∫

⌊∇′ρ⌋
R

dτ ′ = −
∫

⌊ρ⌋ R̂

R2
dτ ′
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As time goes by Where we find Jefimenko’s Equations

The Road to E-dorado

Jefimenko’s Equation for the electric field

E(r, t) =
1

4πϵ0

∫ ⌊ρ⌋
R2

R̂+
⌊ρ̇⌋
cR

R̂−

⌊
J̇
⌋

c2R

dτ ′
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As time goes by Where we find Jefimenko’s Equations

Who can it B now?

Known solution

B(r, t) =
µ0

4π

∫
(∇× J)

(
r′, t− R

c

)
R

dτ ′

Rewriting (∇× J)
(
r′, t− R

c

)

∇′ × ⌊J⌋ = ⌊∇× J⌋+∇′tr ×
⌊
∂J

∂tr

⌋
= ⌊∇× J⌋+ 1

c
R̂×

⌊
∂J

∂tr

⌋

= ⌊∇× J⌋ −

⌊
J̇
⌋

c
× R̂
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As time goes by Where we find Jefimenko’s Equations

Who can it B now?

Rewriting (∇× J)
(
r′, t− R

c

)

∇′ × ⌊J⌋ = ⌊∇× J⌋ −

⌊
J̇
⌋

c
× R̂

Substituting in B

B(r, t) =
µ0

4π

∫
⌊∇× J⌋

R
dτ ′

=
µ0

4π

∫ ∇′ × ⌊J⌋
R

+

⌊
J̇
⌋
× R̂

cR
dτ ′
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As time goes by Where we find Jefimenko’s Equations

Who can it B now?

Stokes’ Theorem ∫
V
∇×Tdτ = −

∮
∂V

T× dS

Back to the curl

∫
V

∇′ × ⌊J⌋
R

dτ ′ =

∫
V
∇′ ×

(
⌊J⌋
R

)
dτ ′ +

∫
V
⌊J⌋×∇′

(
1

R

)
dτ ′

= −
∮
∂V

⌊J⌋
R

× dS′ +

∫
V
⌊J⌋×∇′

(
1

R

)
dτ ′
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Who can it B now?

Back to the curl∫
V

∇′ × ⌊J⌋
R

dτ ′ = −
∮
∂V

⌊J⌋
R

× dS′ +

∫
V
⌊J⌋×∇′

(
1

R

)
dτ ′

Since the integration is carried over all space and the currents vanish when
r → ∞, it follows that ∮

∂V

⌊J⌋
R

× dS′ = 0∫ ∇′ × ⌊J⌋
R

dτ ′ =

∫
⌊J⌋×∇′

(
1

R

)
dτ ′∫ ∇′ × ⌊J⌋

R
dτ ′ =

∫
⌊J⌋× R̂

R2
dτ ′

N. Alves (IFUSP) As Time Goes By October 3, 2018 41 / 46



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

As time goes by Where we find Jefimenko’s Equations

Who can it B now?

Jefimenko’s Equation for the magnetic field

B(r, t) =
µ0

4π

∫ ⌊J⌋
R2

+

⌊
J̇
⌋

cR

× R̂dτ ′
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As time goes by Where we find Jefimenko’s Equations

A solution to Maxwell’s Equations

Jefimenko’s Equations


E(r, t) =
1

4πϵ0

∫ ⌊ρ⌋
R2

R̂+
⌊ρ̇⌋
cR

R̂−

⌊
J̇
⌋

c2R

dτ ′

B(r, t) =
µ0

4π

∫ ⌊J⌋
R2

+

⌊
J̇
⌋

cR

× R̂dτ ′

(8)
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Starting over

What about the potential formulation?
One might use the retarded potentials and the identities

E = −∇V − ∂A

∂t
, B = ∇×A

to obtain Jefimenko’s Equations
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Final remarks

Jefimenko’s Equations

The electromagnetic fields are generated directly by the charges and
currents
The treatment must be more carefull than the one used to obtain the
retarded potentials
Reduce to Coulomb’s and Biot-Savart’s Laws in the static limit

Physical intuition

Valuable, but dangerous
When used without the appropriate mathematical care, may lead to
doubtful - i.e., false - results
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