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1 Preliminaries
Before we begin with the calculations, we should make some preliminary definitions in
order to have a clear understanding of how to compute the gradient, divergence, curl,
and Laplacian of scalar and vector fields. While our main focus will be devoted to
three-dimensional Euclidean space, this section will be written in such a manner that we
can get generic definitions for a pseudo-Riemannian manifold (M, gab) of dimension n.
We’ll let s denote the number of negative entries on the metric signature of the manifold.

1.1 Wedge Product

Our first step will be to recall a few definition about differential forms. As discussed on
Wald 1984, App. B, a differential k-form is a completely antisymmetric (0, k)-type tensor.
We’ll often omit the “differential” and simply call them k-forms. We define the wedge
product between a p-form ω and a k-form µ as the (p+ k) form ω ∧ µ defined by

(ω ∧ µ)a1···apb1···bk =
(p+ k)!

p!k!
ω[a1···apµb1···bk]. (1.1)

1.2 Exterior Derivative

If ω is a k-form, we may define its exterior derivative dω as the (k + 1)-form

(dω)a1···ak+1
= (k + 1)∇[a1

ωa2···ak+1]
, (1.2)
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where ∇a denotes any (torsionless) differential operator on the manifold. The expression is
well-defined because the antisymmetrization cancels out the Christoffel symbols, since the
torsionless condition implies these are symmetric on the lower indices. As a consequence,
we can simply choose ∇a = ∂a for some arbitrary choice of coordinates. For the remainder
of this text, ∇a will always denote the Levi-Civita connection induced by the metric.

Using the antissymetric properties of forms, it can be shown that d(dω) = 0 for any
form ω, id est, d2 = 0.

To gain some intuition, let us consider a few examples. Let first f be a zero-form, id
est, f ∈ C∞(M). Then

(df)a = ∂af, (1.3a)
(df)ana = na∂af, (1.3b)

df (n) = n(f). (1.3c)

Notice that (df)a = ∂af is quite similar to how we express the gradient in vector calculus.
We’ll get back to it later.

For the next examples, well specialize to three dimensions, which is where we want to
get eventually. Let us then pick F to be a one-form field, id est, F ∈ Γ(T ∗M). In this
case, we’ll have, in Cartesian coordinates,

dF = ∂iFj dxi ∧ dxj , (1.4a)
=

(
∂yFz − ∂zFy

)
dy ∧ dz + (∂zFx − ∂xFz )dz ∧ dx+

(
∂xFy − ∂yFx

)
dx ∧ dy ,

(1.4b)

whose components resemble the curl of a vector field.
Finally, pick F to be a two-form, id est, F ∈ Γ

(∧2 T ∗M
)

. Then

dF = ∂iFjk dxi ∧ dxj ∧ dxk , (1.5a)
= ∂iFjk dxi ∧ dxj ∧ dxk , (1.5b)
=

(
∂xFyz + ∂yFzx + ∂zFxy

)
dx ∧ dy ∧ dz , (1.5c)

which resembles the expression for the divergence of a vector field, if we were to write
F i ∝ εijkFjk .

1.3 Hodge Dual

We’ll also define the Hodge dual of a k-form ω, denoted ?ω, according to

? ωb1···bn−k
=

1

k!
ωa1···akεa1···akb1···bn−k

, (1.6)

where εa1···an is the natural volume element on the manifold. One can show that

? ?ω = (−1)s+k(n−k)ω. (1.7)
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1.4 Gradient

Our first step is to define the gradient in a coordinate-invariant manner. Let f ∈ C∞(M).
The gradient ∇f of f can be seen as a vector whose inner product with any unit vector n̂
yields the directional derivative n · ∇f = ∂f

∂n . Since we are defining a vector in terms of
its action on other vectors, it is simpler if we first consider the one-form associated to it
by means of the metric isomorphism and only then define the actual vector field.

We want to consider the one-form that to each unit vector n̂ assigns the directional
derivative n · ∇f = ∂f

∂n . By definition, this is done by the function’s differential, df ,
defined according to df (n) = n(f). Hence, the gradient is defined as

(∇f)a = gab(df)b = ∇af. (1.8)

In index-free notation, we can simply write this vector field as df ], where ] denotes “a
raised index”.

1.5 Divergence

Next we want to obtain the expression for the divergence. Let F ∈ Γ(TM), id est, let
F be a vector field over the manifold. We’ve seen on Eq. (1.5) on the preceding page
that the expression for dF when F is a two-form field remembers the expression for the
divergence if we were to write F i ∝ εijkFjk . However, we do not want F to be a two-form
field, we want it to be a vector. What can we do?

As we’ve noticed before, the trick is in using a Levi-Civita symbol, which we can
generalize to the volume form on the manifold. We then notice that the expression we
had at hands really reminds us of a Hodge dual. Hence, let us start with the vector field
F . We can obtain a one-form from it by using the metric, leading us to F[ (in abstract
index notation, Fa = gabF

b). Using the Hodge dual, we then get ?F[. We may now take
the differential and obtain d(?F[). This is a three-form, so we can use the Hodge dual
again and get to a scalar by writing ?d(?F[). Let us see how this object is written in
abstract index notation. We have

?d ? F[ =
1

6!
[d(?F[)]

abcεabc, (1.9a)

=
1

6!
[d(?F[)]defg

adgbegcf εabc, (1.9b)

=
1

2
∂[d(?F[)ef ]g

adgbegcf εabc, (1.9c)

=
1

2
∇[d(?F[)ef ]g

adgbegcf εabc, (1.9d)

=
1

2
∇[d

(
F gεef ]g

)
gadgbegcf εabc, (1.9e)

=
1

2
∇[dF

gεef ]gg
adgbegcf εabc, (1.9f)

=
1

2
∇dF

gεefgε
def , (1.9g)
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=
1

2
∇dF

gεefgε
def , (1.9h)

= ∇dF
gδ d

g , (1.9i)
= ∇gF

g, (1.9j)

which, in locally flat coordinates, is precisely

? d ? F[ = ∂iF
i, (1.10)

id est, it is indeed the divergence.

1.6 Curl

As for the curl, we can follow the lead provided by Eq. (1.4) on page 2. Suppose F is a
vector field. Then F[ is a one-form field and dF[ is a two-form field whose components
resemble those of the curl of F . Let us then take the Hodge dual to get to the one-form field
?dF[ and at last consider the associated vector field, (?dF[)

]. How does this expression
read in abstract index notation?

Once again, we work in a three-dimensional, Riemannian manifold for simplicity. We
get

(?dF[)
] = gab(?dF[)b, (1.11a)

=
1

2
gab(dF[)

cdεcdb, (1.11b)

=
1

2
εacd(dF[)cd, (1.11c)

= εacd∇[c

(
gd]eF

e
)
, (1.11d)

= εacd∇cF
egde. (1.11e)

To proceed, we now pick a system of locally flat coordinates on the manifold, which leads
us to

(?dF[)
] = εijk∂jF

lδlk(∂i)
a, (1.12a)

=
(
∂yF

z − ∂zF
y
)
(∂x)

a + (∂zF
x − ∂xF

z)(∂y)
a +

(
∂xF

y − ∂yF
x
)
(∂z)

a, (1.12b)

which is precisely the expression we expected for the curl.

1.7 Laplacian

At last, let us also consider the Laplacian of both scalar and of a vector fields.
Firstly let f ∈ C∞(M). In this case, the Laplacian can be defined as the divergence

of the gradient. Hence, using the previous formulae we get that the Laplacian can be
written as ?d ? df . In abstract index notation it will be written as

? d ? df = ∇a∇af. (1.13)
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As for the Laplacian of a vector field, it can be defined in vector notation as

∇2F = ∇(∇ · F)−∇× (∇× F). (1.14)

Hence, using our previous results we get to [d ? d ? F[ − ?d ? dF[]
]. In abstract index

notation this becomes (for a three-dimensional, Riemannian manifold)

[d ? d ? F[ − ?d ? dF[]
] = ∇a∇bF

b − εabc∇b

(
ε de
c ∇dFe

)
, (1.15a)

= ∇a∇bF
b − εabc∇b

(
ε de
c ∇dFe

)
, (1.15b)

= ∇a∇bF
b − εabc∇b

(
ε de
c ∇dFe

)
, (1.15c)

= ∇a∇bF
b − 2δ

[a
dδ

b]
e∇b∇dF e, (1.15d)

= ∇a∇bF
b −∇b∇aF b +∇b∇bF a, (1.15e)

= −Ra
bF

b +∇b∇bF a, (1.15f)

where the last step uses known properties of the Riemann and Ricci tensors (see Wald
1984, pp. 37–39).

2 Cylindrical Coordinates
Let us compute a few of the common vector calculus identities in cylindrical coordinates.
Given the large number of covariant derivatives occurring on the expressions we’ll be
dealing with, we better begin by writing down the metric and its Christoffel symbols. The
metric is given by

ds2 = dr2 + r2 dθ2 + dz2 . (2.1)
One can then compute the Christoffel symbols and find out the non-vanishing ones

are given by or related to
Γr

θθ = −r and Γθ
rθ =

1

r
. (2.2)

Before we continue, let us notice that in differential geometry we often work with
non-normalized bases, but in vector notation this is not the case. For example, the vector
(∂θ)

a is not normalized, since
(∂θ)

a(∂θ)
bgab = r2. (2.3)

However, 1
r (∂θ)

a is normalized. Hence, we’ll write

F a = F r(∂r)
a +

F θ

r
(∂θ)

a + F z(∂z)
a (2.4)

so we are able to compare our formulae with the standard one from, exempli gratia,
Electrodynamics textbooks, such as Griffiths 2017.

At last, the curl will require us to be able to write the volume form on cylindrical
coordinates. We recall that this can be done by usual coordinate transformation methods
and yields

εabc = dx ∧ dy ∧ dz = r dr ∧ dθ ∧ dz . (2.5)
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Raising the indices, we get to

εabc = 3!rgadgbegcf (dr)[d(dθ)e(dz)f ], (2.6a)

=
6

r
(∂r)

[a(∂θ)
b(∂z)

c]. (2.6b)

2.1 Gradient

We begin with the gradient. It reads

(∇f)a = ∇af, (2.7a)
= ∂af, (2.7b)
= gab∂bf, (2.7c)
= [∂rf(dr)b + ∂θf(dθ)b + ∂zf(dz)b]gab, (2.7d)

= ∂rf(∂r)b +
∂θf

r2
(∂θ)b + ∂zf(∂z)b]g

ab. (2.7e)

Taking into account that we want the components with respect to the normalized basis
given by

r̂ = (∂r)
a, θ̂ =

1

r
(∂θ)

a, and ẑ = (∂z)
a, (2.8)

we find that
∇f = ∂rf r̂ + 1

r
∂θf θ̂ + ∂zf ẑ. (2.9)

2.2 Divergence

Let us now consider the divergence of a vector field. Using the convention of Eq. (2.4) on
the preceding page in which the components are always given in terms of the orthonormal
basis we have

∇ · F = ∇aF
a, (2.10a)

= ∂aF
a + Γa

abF
b, (2.10b)

= ∂rF
r + ∂θ

(
F θ

r

)
+ ∂zF

z + Γθ
θrF

r, (2.10c)

= ∂rF
r + ∂θ

(
F θ

r

)
+ ∂zF

z +
1

r
F r, (2.10d)

=
1

r
∂r (rF

r) + ∂θ

(
F θ

r

)
+ ∂zF

z, (2.10e)

which is precisely the expected result.
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2.3 Curl

Next we consider the curl. Since we want to compute (∇× F)a = εabc∇bFc , we start by
noticing that

Fc = F r(dr)c + rF θ(dθ)c + F z(dz)c. (2.11)
As a consequence,

∇bFc = ∂bFc − Γd
bcFd , (2.12a)

= ∂bFc − Γd
bcFd , (2.12b)

and hence

εabc∇bFc = εabc
[
∂bFc − Γd

bcFd

]
, (2.13a)

= εabc∂bFc , (2.13b)

due to the torsionless condition. Therefore, we now got to

(∇× F)a = εabc∂bFc , (2.14a)

=
6

r
(∂r)

[a(∂θ)
b(∂z)

c](∂bFc ), (2.14b)

=
6

r
(∂r)

[a(∂θ)
b(∂z)

c](∂bFc ), (2.14c)

=
1

r

[
(∂θF

z − ∂z(rF
θ))(∂r)

a + (∂zF
r − ∂rF

z)(∂θ)
a + (∂r(rF

θ)− ∂θF
r)(∂z)

a
]
,

(2.14d)
finally leading us to the conclusion that

∇× F =

(
∂θF

z

r
− ∂zF

θ

)
r̂ + (∂zF

r − ∂rF
z)θ̂ +

(
1

r
∂r(rF

r)− ∂θF
r

r

)
ẑ, (2.15)

as expected.

2.4 Scalar Laplacian

Next let us consider the scalar Laplacian. Notice it is different from the vector Laplacian,
since the covariant derivatives will act differently on each type of tensor. It is only in
Cartesian coordinates that they both coincide. We’ll begin by working out the Laplacian
for scalar functions. We have

∇2f = ∇a∇af, (2.16a)
= gab∇a∂bf, (2.16b)
= gab∂a∂bf − gabΓc

ab∂cf, (2.16c)

= ∂2
rf +

1

r2
∂2
θf + ∂2

zf − 1

r2
Γc

θθ∂cf, (2.16d)

= ∂2
rf +

1

r2
∂2
θf + ∂2

zf +
1

r
∂rf, (2.16e)

=
1

r
∂r(r∂rf) +

1

r2
∂2
θf + ∂2

zf, (2.16f)
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as expected.

2.5 Vector Laplacian

Finally we consider the vector Laplacian. Since we’re working in flat Euclidean space, the
Ricci curvature vanishes and we can write(

∇2F
)a

= ∇b∇bF a, (2.17)

meaning the big change in the expression is the fact that now the connection acts in a
more complicated way.

References
Griffiths, David J. (2017). Introduction to Electrodynamics. Cambridge: Cambridge Uni-

versity Press.
Wald, Robert M. (1984). General Relativity. Chicago: University of Chicago Press.

– 8 –


	Contents
	Preliminaries
	Wedge Product
	Exterior Derivative
	Hodge Dual
	Gradient
	Divergence
	Curl
	Laplacian

	Cylindrical Coordinates
	Gradient
	Divergence
	Curl
	Scalar Laplacian
	Vector Laplacian

	References

