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Abstract: This is a computation of the stress-energy-momentum tensor for a scalar
field with non-minimal coupling to the background curved spacetime. The goal is mainly
to keep the result ready at hand when I need it again in the future, so parts of the
computation come from references instead of being redone entirely.
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1 Action and Conventions
We’ll consider the field to have action given by

SM = −1

2

∫ (
∇aϕ∇aϕ+ V (ϕ) + ξRϕ2

)√
−g d4x , (1.1)

where typically one will be interested in the case V (ϕ) = m2ϕ2.
Our conventions are essentially those of Wald 1984, but we’ll write the integrals in

terms of coordinates instead of using differential forms. While this procedure introduces
a coordinate system without necessity, the expressions should be more familiar to those
more acquainted with field theory. Also, we’ll immediately correct Wald 1984, Eq. (E.1.26)
to read

Tab ≡ − 2√
−g

δSM

δgab
, (1.2)

which essentially means we’re already setting αM = 16π as Wald 1984, p. 455 instructs
the reader to do for the case of a Klein–Gordon field, or simply that we’re considering the
full action (including gravity and the matter fields) to read

SM =

∫ [
1

16π
R− 1

2

(
∇aϕ∇aϕ+ V (ϕ) + ξRϕ2

)]√
−g d4x . (1.3)

2 Computation
We need to compute∗

δ

δgab

[∫ (
∇aϕ∇aϕ+ V (ϕ) + ξRϕ2

)√
−g d4x

]
. (2.1)

Notice that we could write the kinetic term in terms of ordinary derivatives if we
preferred, so it doesn’t really depend on the metric apart from the contraction and the

∗Notice that while we took the − 1
2

factor away from Eq. (2.1), this would need to be done in Eq. (1.2)
either way.
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volume element. Hence, we have

δ

δgab

[∫
gab∇aϕ∇bϕ

√
−g d4x

]
= ∇aϕ∇bϕ

√
−g +∇cϕ∇cϕ

δ
√
−g

δgab
, (2.2a)

= ∇aϕ∇bϕ
√
−g − 1

2
gab∇cϕ∇cϕ

√
−g, (2.2b)

where we employed Wald 1984, Eq. (E.1.17),

δ
√
−g

δgab
= −1

2

√
−ggab. (2.3)

Next we move to the potential. It is given simply by

δ

δgab

[∫
V (ϕ)

√
−g d4x

]
= V (ϕ)

δ
√
−g

δgab
, (2.4a)

= −1

2
gabV (ϕ)

√
−g. (2.4b)

Finally, we deal with the curvature coupling. It is given by

δ

δgab

[∫
ξRϕ2√−g d4x

]
= ξ

δRcd

δgab
gcdϕ2√−g + ξRcd

δgcd

δgab
ϕ2√−g + ξRϕ2 δ

√
−g

δgab
, (2.5a)

= ξ
δRcd

δgab
gcdϕ2√−g + ξRabϕ

2√−g − 1

2
Rgabξϕ

2√−g, (2.5b)

= ξ
δRcd

δgab
gcdϕ2√−g + ξGabϕ

2√−g. (2.5c)

Hence, so far we have the expression

Tab = ∇aϕ∇bϕ− 1

2
gab[∇cϕ∇cϕ+ V (ϕ)] + ξ

(
Gab +

δRcd

δgab
gcd

)
ϕ2. (2.6)

Therefore, all that remains is to compute the term associated with the Ricci tensor.
To compute the term associated with the Ricci tensor, it can be easier to do it from

inside an integral, so we can explicitly see how we can carry a few integrations by parts.
Hence, we begin with ∫

ξgcdδRcdϕ
2√−g d4x . (2.7)

From Wald 1984, Eq. (3.4.5), we know that

Rµν = ∂ρΓ
ρ
µν − ∂µΓ

ρ
ρν + Γσ

µνΓ
ρ
σρ − Γσ

ρνΓ
ρ
σµ. (2.8)

In a locally inertial reference frame, we’ll find that

δRµν = ∂ρδΓ
ρ
µν − ∂µδΓ

ρ
ρν , (2.9a)

= ∇ρδΓ
ρ
µν −∇µδΓ

ρ
ρν . (2.9b)
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Since the last equation is tensorial (δΓρ
µν is a difference of Christoffel symbols, and hence

a tensor — see Poisson 2004, p. 122), it holds in all coordinate systems, and we conclude
that

δRab = ∇cδΓ
c
ab −∇aδΓ

c
cb, (2.10a)

gabδRab = gab∇cδΓ
c
ab − gab∇aδΓ

c
cb, (2.10b)

= gab∇cδΓ
c
ab − gcb∇cδΓ

a
ab, (2.10c)

= ∇c

[
gabδΓc

ab − gcbδΓa
ab

]
. (2.10d)

Next we need to compute the variation of the Christoffel symbols. From a similar
argument, we have

δΓσ
µν =

1

2
δ
(
gστ

(
∂µgντ + ∂ν gτµ − ∂τ gµν

))
, (2.11a)

=
1

2
δgστ

(
∂µgντ + ∂ν gτµ − ∂τ gµν

)
+

1

2
gστ

(
∂µδgντ + ∂ν δgτµ − ∂τ δgµν

)
, (2.11b)

=
1

2
δgστ

(
∇µgντ +∇νgτµ −∇τgµν

)
+

1

2
gστ

(
∇µδgντ +∇νδgτµ −∇τδgµν

)
,

(2.11c)

=
1

2
gστ

(
∇µδgντ +∇νδgτµ −∇τδgµν

)
, (2.11d)

δΓc
ab =

1

2
gcd(∇aδgbd +∇bδgda −∇dδgab). (2.11e)

We’ll be interested in two versions of this expression to substitute in the expression
for the variation of the Ricci tensor. The first of them is

gabδΓc
ab =

1

2
gabgcd(∇aδgbd +∇bδgda −∇dδgab), (2.12a)

=
1

2
gabgcd(2∇aδgbd −∇dδgab). (2.12b)

The remaining one is

gcbδΓa
ab =

1

2
gcbgad(∇aδgbd +∇bδgda −∇dδgab), (2.13a)

=
1

2
gcbgad∇bδgda. (2.13b)

With these results in mind, we now see that

gabδRab = ∇c

[
gabδΓc

ab − gcbδΓa
ab

]
, (2.14a)

=
1

2
∇c

[
gabgcd(2∇aδgbd −∇dδgab)− gcbgad∇bδgda

]
, (2.14b)

= gabgcd∇c∇aδgbd −
1

2
gab∇c∇cδgab −

1

2
gad∇c∇cδgad, (2.14c)

= gabgcd∇c∇aδgbd − gab∇c∇cδgab. (2.14d)
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Recalling now that δgab = −gacgbdδg
cd (see Wald 1984, p. 453), we see that

gabδRab = gab∇c∇cδgab −∇a∇bδg
ab, (2.15a)

= (gab∇c∇c −∇a∇b)δg
ab. (2.15b)

We then get to∫
ξgabδRabϕ

2√−g d4x =

∫
ξϕ2(gab∇c∇c −∇a∇b)δg

ab√−g d4x , (2.16a)

=

∫
ξδgab(gab∇c∇c −∇a∇b)(ϕ

2)
√
−g d4x+ surface terms.

(2.16b)

We’ll discard the surface terms and conclude that

ξ
1√
−g

δRcd

δgab
gcdϕ2 = ξ(gab∇c∇c −∇a∇b)(ϕ

2). (2.17)

Finally, we find that we can write the stress-energy-tensor as

Tab = ∇aϕ∇bϕ− 1

2
gab[∇cϕ∇cϕ+ V (ϕ)] + ξϕ2Gab + ξ(gab∇c∇c −∇a∇b)(ϕ

2). (2.18)

3 Trace of the Stress-Energy-Momentum Tensor
As a final check, it is useful to compute the trace of the tensor we just found so we can
see, for example, whether we get a traceless tensor in the case V = 0, ξ = d−2

4(d−1) , which
corresponds to a conformal theory (see Wald 1984, App. D). In the previous expression
and in the following computations, d corresponds to the dimension of spacetime.

Firstly, let us notice that the action of Eq. (1.1) on page 1 leads us to the equations of
motion

∇a∇aϕ− 1

2
V ′(ϕ)− ξRϕ = 0, (3.1)

where V ′(ϕ) is the derivative of V with respect to ϕ.
Also, let us notice that, in d dimensions, the trace of the Einstein tensor is

gab
(
Rab −

1

2
Rgab

)
=

(
1− d

2

)
R. (3.2)

Now let us begin computing the trace. We have

T ≡ gabTab , (3.3a)

= ∇aϕ∇aϕ− d

2
[∇cϕ∇cϕ+ V (ϕ)] + ξϕ2G a

a + ξ(d∇c∇c −∇a∇a)(ϕ2), (3.3b)

=

(
1− d

2

)
∇aϕ∇aϕ− d

2
V (ϕ) + ξϕ2

(
1− d

2

)
R+ ξ(d− 1)∇a∇a(ϕ2). (3.3c)
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We now notice that

∇a∇a(ϕ2) = 2∇a(ϕ∇aϕ), (3.4a)
= 2∇aϕ∇a + 2ϕ∇a∇a. (3.4b)

Hence, the trace becomes

T =

[
2ξ(d− 1)− d− 2

2

]
∇aϕ∇aϕ− d

2
V (ϕ)− ξ(d− 2)

2
Rϕ2 + 2ξ(d− 1)ϕ∇a∇a. (3.5)

If we now employ the equations of motion and simplify the expressions, we find that

T =

[
2ξ(d− 1)− d− 2

2

](
∇aϕ∇aϕ+ ξRϕ2

)
− d

2
V (ϕ) + ξ(d− 1)ϕV ′(ϕ). (3.6)

For ξ = d−2
4(d−1) and V (ϕ) = 0, the expression reduces to T = 0, just as we expected.
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