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1 What is Equilibrium?

1.1 Phenomenological Description

Thermodynamical systems can be in equilibrium or out of equilibrium. While most systems
are not in equilibrium, some of them are. Introductory courses on Thermodynamics and
Statistical Mechanics will often focus on equilibrium processes, so in order to understand
how to describe nonequilibrium process, it is important for us to first understand what
are the differences between each situation.
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To obtain a general description, let us begin by considering an isolated system composed
of two parts, 𝐴 and 𝐵, as illustrated in Fig. 1.1.

𝐴 𝐵

Figure 1.1: An isolated system composed of two parts, 𝐴 and 𝐵. The wall in between the parts
can be removed so that they interact.

Let us consider some thermodynamic variable 𝑥𝑘, with 𝑥𝐴
𝑘 being associated to the

subsystem 𝐴 and 𝑥𝐵
𝑘 being associated to 𝐵. 𝑥𝑘 can be either the internal energy 𝑈, the

volume 𝑉, or the number of particles 𝑁 of the constituents of the system1. Notice that
due to the system being isolated, 𝑥𝐴

𝑘 or 𝑥𝐵
𝑘 might change, but their sum 𝑥𝐴

𝑘 + 𝑥𝐵
𝑘 always

remains constant (which is just another way of stating the First Law of Thermodynamics).
In a differential formulation, we get

d𝑥𝐴
𝑘 + d𝑥𝐵

𝑘 = 0. (1.1)

Notice that this expression holds true for the internal energy, volume, and particle number,
but might fail for other quantities, such as temperature and entropy.

We know that to each of the system’s we can attribute entropy functions 𝑆𝐴 =
𝑆𝐴(𝑈𝐴, 𝑉 𝐴, 𝑁𝐴) and 𝑆𝐵 = 𝑆𝐵(𝑈𝐵, 𝑉 𝐵, 𝑁𝐵). We know that the total entropy of the
system is also given by 𝑆 = 𝑆𝐴 + 𝑆𝐵. Hence, we know that

d𝑆 = d𝑆𝐴 + d𝑆𝐵 . (1.2)

The Second Law of Thermodynamics ensures that d𝑆 ≥ 0.
Due to the First Law, we know that the extensive quantities associated to 𝐴 are

related to those of 𝐵. This leads to the consequence that

( 𝜕𝑆
𝜕𝑥𝐴

𝑘
) = (𝜕𝑆𝐴

𝜕𝑥𝐴
𝑘

) + (𝜕𝑆𝐵

𝜕𝑥𝐴
𝑘

), (1.3a)

= (𝜕𝑆𝐴

𝜕𝑥𝐴
𝑘

) − (𝜕𝑆𝐵

𝜕𝑥𝐵
𝑘

). (1.3b)

This quantity can be interpreted as a sort of “thermodynamical force” (not as a
mechanical force). Notice that, if each side is in equilibrium, then this expression leads us

1We could be more general and assume many chemical components inside each subsystem, so we’d need
to consider the number of particles of each one separately, but our treatment can be easily generalized.
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to the particular cases

( 𝜕𝑆
𝜕𝑈𝐴 )

𝑉 𝐴,𝑁𝐴
= 1

𝑇 𝐴 − 1
𝑇 𝐵 , (1.4a)

( 𝜕𝑆
𝜕𝑉 𝐴 )

𝑈𝐴,𝑁𝐴
= 𝑃 𝐴

𝑇 𝐴 − 𝑃 𝐵

𝑇 𝐵 , (1.4b)

and

( 𝜕𝑆
𝜕𝑁𝐴 )

𝑈𝐴,𝑉 𝐴
= − 𝜇𝐴

𝑇 𝐴 + 𝜇𝐵

𝑇 𝐵 , (1.4c)

and therefore non-vanishing “thermodynamical forces” will lead to an energy, volume, or
particle number flux between the subsystems once the wall is removed.

If we remove the barrier between the subsystems 𝐴 and 𝐵 and let them interact,
they will then eventually reach equilibrium and a steady state. A different situation is
illustrated in Fig. 1.2, where one has two particles, each of them subject to a thermal
bath, connected by a spring. Even though the system will eventually evolve to a steady
state, it is never in equilibrium, for energy keeps continuously flowing from the hot bath
to the cold one.

𝑇1 𝑇2

Figure 1.2: A system composed of two particles connected by a spring. Each particle is subject
to a thermal bath. If the temperatures of the baths are unequal, the system is always
in nonequilibrium, even though it evolves to a steady state in which energy keeps
flowing from the hooter reservoir to the colder one.

How can we generally distinguish between equilibrium and nonequilibrium then? To
see this, let us consider the differential expression

d𝑆 = ∑
𝑘

(𝜕𝑆𝐴

𝜕𝑥𝐴
𝑘

− 𝜕𝑆𝐵

𝜕𝑥𝐵
𝑘

) d𝑥𝐴
𝑘 . (1.5)

For thermal equilibrium, we have d𝑆 = 0. In this situation, we often have2

𝜕𝑆𝐴

𝜕𝑥𝐴
𝑘

− 𝜕𝑆𝐵

𝜕𝑥𝐵
𝑘

= 0. (1.6)

2Since equilibrium only requires d𝑆 = 0, we may still have ( 𝜕𝑆𝐴

𝜕𝑥𝐴
𝑘

− 𝜕𝑆𝐵

𝜕𝑥𝐵
𝑘

) d𝑥𝐴
𝑘 ≠ 0 for different values

of 𝑘, as long as their sum vanishes. This can happen, for example, for a Carnot engine.
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Since d𝑆 ≥ 0, if we hold all extensive variables constant but one of them, we’ll have
that 𝜕𝑆𝐴

𝜕𝑥𝐴
𝑘

− 𝜕𝑆𝐵

𝜕𝑥𝐵
𝑘

> 0 if, and only if, d𝑥𝐴
𝑘 > 0. Similarly, 𝜕𝑆𝐴

𝜕𝑥𝐴
𝑘

− 𝜕𝑆𝐵

𝜕𝑥𝐵
𝑘

< 0 if, and only
if, d𝑥𝐴

𝑘 < 0 This implies that energy will flow from hot to cold, volume will flow from Why can’t I
have d𝑥𝐴

𝑘 = 0?low pressure to high pressure, particles will flow from large chemical potential to small
chemical potential.

If d𝑆 > 0, then for at least one value of 𝑘 we have 𝐹𝑘 ≡ 𝜕𝑆𝐴

𝜕𝑥𝐴
𝑘

− 𝜕𝑆𝐵

𝜕𝑥𝐵
𝑘

≠ 0. In this case,

notice that we’ll have a non-vanishing flux 𝐽𝑘 ≡ d𝑥𝐴
𝑘

d𝑡 . Hence, for d𝑆 > 0, we have a flux if, Is this condition
necessary?and only if, we have a thermodynamical force.

This leads us to the following definition: a system is in equilibrium when its entropy
production 𝜎, defined as

𝜎 ≡ d𝑆
d𝑡

= ∑
𝑘

(𝜕𝑆𝐴

𝜕𝑥𝐴
𝑘

− 𝜕𝑆𝐵

𝜕𝑥𝐵
𝑘

)d𝑥𝐴
𝑘

d𝑡
= ∑

𝑘
𝐹𝑘𝐽𝑘, (1.7)

vanishes, but out of equilibrium when it doesn’t.
The importance of entropy production is that it will, for example, generalize to more

complicated systems, including small systems (as opposed with systems whose number
of particles is comparable to Avogadro’s number). However, it will still be positive for
equilibrium and strictly positive for nonequilibrium3.

One can show that in the spring system of Fig. 1.2 on the preceding page the entropy
production is proportional to (𝑇1 − 𝑇2)2, so the system is out of equilibrium whenever
the temperatures are different. The direction of the energy flux is determined by the sign
of the temperature difference.

In most situations, the entropy production can’t be attributed to the subsystem 𝐴 or
𝐵, but rather it is a property of the whole composite system. There is, though, a specific
situation in which we can discuss the entropy production due to a subsystem: when one
of the subsystems is much larger than the other.

Suppose for example that 𝐵 is much larger than 𝐴. Then we can treat 𝐵 as a reservoir,
with 𝜕𝑆𝐵

𝜕𝑥𝐵
𝑘

being approximately constant. In this situation, we can write

d𝑆
d𝑡

= ∑
𝑘

(𝜕𝑆𝐴

𝜕𝑥𝐴
𝑘

− 𝜕𝑆𝐵

𝜕𝑥𝐵
𝑘

)d𝑥𝐴
𝑘

d𝑡
, (1.8a)

= ∑
𝑘

𝜕𝑆𝐴

𝜕𝑥𝐴
𝑘

d𝑥𝐴
𝑘

d𝑡
+ 𝜙, (1.8b)

= d𝑆𝐴

d𝑡
+ 𝜙, (1.8c)

where 𝜙 is called the entropy flux and is due only to the bath. It will be given in terms of
the heat flux of the reservoir as 𝜙 = �̇�

𝑇 (cf. the Clausius relation). In this situation, we
can interpret

d𝑆𝐴

d𝑡
= d𝑆

d𝑡
− 𝜙 = 𝜎 − 𝜙 (1.9)

3In fact, fluctuations can lead to a measurement of negative entropy production (Crooks 1998, 1999).
We shall discuss this later in the course.
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as the entropy production due to 𝐴. Notice that while the Second Law implies d𝑆
d𝑡 ≥ 0,

there is no restriction on the sign of d𝑆𝐴

d𝑡 .
At a steady state, we’ll have d𝑆𝐴

d𝑡 = 0, i.e., the system’s entropy will no longer depend
on time. This then implies 𝜎 = 𝜙. We can then still have equilibrium or nonequilibrium,
depending on whether 𝜎 = 𝜙 = 0 (equilibrium) or 𝜎 = 𝜙 > 0 (nonequilibrium). Notice
that 𝜎 = 0 doesn’t mean nothing is happening: it means only that on average, the effects
cancel out.

Hence, while there are other definitions, the difference between a system being or not Should I com-
ment on this?in equilibrium is whether the entropy production vanishes or not. As for the difference

between equilibrium and steady state, it boils down to the fact that in steady state the
quantities no longer change with time on average (i.e., macroscopically).

Typically, systems will evolve to a steady state, be it in equilibrium or not. To
distinguish between them, we can compute the entropy production. But how do we do
that?

1.2 Markovian Systems and the Master Equation

In order to be able to do computations, it is interesting for us to reformulate these
phenomenological concepts in an stochastic4 language. This will allow us, for example, to Check this

definition of
stochastic
(is quantum
stochastic?)

treat more general systems. Some references that might be useful are Tomé and M. J. de
Oliveira 2015a,b; Van den Broeck and Esposito 2015.

Since we can’t describe large numbers of particles with just Classical or Quantum
Mechanics, we often resort to statistical methods to describe large systems. For example,
is a system is in thermal equilibrium at fixed inverse temperature 𝛽, we assign to its
microstates probabilities according to the Gibbs distribution,

𝑝𝑛 = 𝑒−𝛽𝐸𝑛

𝑍
. (1.10)

However, how can we do this in systems that are not in equilibrium?
In order to achieve that, we’ll begin by describing the so-called Markovian systems. A

Markovian system is a system whose probabilities on a given step depend only on the
conditions of the previous step, as opposed to depending on the entire history of the
system. Markovian processes are way simpler to describe and they are able to describe a
wide range of phenomena, so it is interesting to consider them.

For a Markovian system with 𝑙 steps, we can write the probability of getting the
outcomes {𝑛𝑘} as

𝑃𝑙(𝑛𝑙, 𝑛𝑙−1, … , 𝑛0) = 𝑃𝑙(𝑛𝑙|𝑛𝑙−1, 𝑛𝑙−2, … , 𝑛0)𝑃𝑙−1(𝑛𝑙−1, 𝑛𝑙−2, … , 𝑛0), (1.11a)
= 𝑃𝑙(𝑛𝑙|𝑛𝑙−1)𝑃𝑙−1(𝑛𝑙−1, 𝑛𝑙−2, … , 𝑛0) (1.11b)

where in the first step we used Bayes’ rule and in the second we used the hypothesis that
the system is Markovian. If we keep repeating this argument, we get to

𝑃𝑙(𝑛𝑙, 𝑛𝑙−1, … , 𝑛0) = 𝑃𝑙(𝑛𝑙|𝑛𝑙−1)𝑃𝑙−1(𝑛𝑙−1|𝑛𝑙−2) ⋯ 𝑃1(𝑛1|𝑛0)𝑃0(𝑛0). (1.12)
4A stochastic system is any system that is not deterministic.
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Therefore, if we know the transition rates 𝑃𝑘(𝑛𝑘|𝑛𝑘−1 and the initial probability 𝑃0(𝑛0),
we can reconstruct the entire evolution.

Some remarks are in place. For example, due to the properties of conditional probabil-
ities, we have that 𝑃𝑘(𝑛𝑘|𝑛𝑘−1 ≥ 0 and ∑𝑛𝑘

𝑃𝑘(𝑛𝑘|𝑛𝑘−1 = 1. Furthermore,

𝑃𝑙(𝑛𝑙) = ∑
𝑛0,…,𝑛𝑙−1

𝑃𝑙(𝑛𝑙, 𝑛𝑙−1, … , 𝑛0), (1.13a)

= ∑
𝑛0,…,𝑛𝑙−1

𝑃𝑙(𝑛𝑙|𝑛𝑙−1)𝑃𝑙−1(𝑛𝑙−1|𝑛𝑙−2) ⋯ 𝑃1(𝑛1|𝑛0)𝑃0(𝑛0), (1.13b)

= ∑
𝑛0,…,𝑛𝑙−1

𝑃𝑙(𝑛𝑙|𝑛𝑙−1)𝑃𝑙−1(𝑛𝑙−1|𝑛𝑙−2) ⋯ 𝑃2(𝑛2|𝑛1)𝑃1(𝑛1, 𝑛0), (1.13c)

= ∑
𝑛1,…,𝑛𝑙−1

𝑃𝑙(𝑛𝑙|𝑛𝑙−1)𝑃𝑙−1(𝑛𝑙−1|𝑛𝑙−2) ⋯ 𝑃2(𝑛2|𝑛1)𝑃1(𝑛1), (1.13d)

= ∑
𝑛𝑙−1

𝑃𝑙(𝑛𝑙|𝑛𝑙−1)𝑃𝑙−1(𝑛𝑙−1). (1.13e)

We see then how in Markov processes the transition rates 𝑃𝑙(𝑛𝑙|𝑛𝑙−1) are important.
Hence, we’ll describe them in terms of a transition matrix 𝑇𝑛𝑚 with the properties that

• 𝑇𝑛𝑚 ≥ 0,

• ∑𝑛 𝑇𝑛𝑚 = 1,

• 𝑃𝑙(𝑛) = ∑𝑚 𝑇𝑛𝑚𝑃𝑙−1(𝑚),

which correspond, respectively, to

• 𝑃𝑘(𝑛𝑘|𝑛𝑘−1) ≥ 0,

• ∑𝑛𝑘
𝑃𝑘(𝑛𝑘|𝑛𝑘−1 = 1

• 𝑃𝑙(𝑛𝑙) = ∑𝑛𝑙−1
𝑃𝑙(𝑛𝑙|𝑛𝑙−1)𝑃𝑙−1(𝑛𝑙−1).

So far, we’ve been describing discrete systems: they have both discrete states and
discrete time. Continuous states could require, e.g., the Langevin equation (see, e.g.,
Salinas 2001; Tomé and M. J. de Oliveira 2015b). However, we will now consider the case
with discrete states, but continuous time.

Let us suppose the transitions from state 𝑚 to 𝑛 take place along a time 𝜏 ≪ 1. Then
we can represent this in the transition matrix by writing

𝑇𝑛𝑚 = 𝛿𝑛𝑚 + 𝜏𝑊𝑛𝑚, (1.14)

where 𝑊𝑛𝑚 is assumed to remain finite as we take a limit 𝜏 → 0 later on.
The normalization condition ∑𝑛 𝑇𝑛𝑚 = 1 now becomes ∑𝑛 𝑊𝑛𝑚 = 0 (which is

possible because the elements of 𝑊𝑛𝑚 correspond to transition rates, not probabilities).
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Notice then that 𝑊𝑛𝑛 = − ∑𝑚≠𝑛 𝑊𝑚𝑛. Hence, we find that

𝑃𝑙(𝑛) = ∑
𝑚

𝑇𝑛𝑚𝑃𝑙−1(𝑚), (1.15a)

= ∑
𝑚

(𝛿𝑛𝑚 + 𝜏𝑊𝑛𝑚)𝑃𝑙−1(𝑚), (1.15b)

= 𝜏 ∑
𝑚≠𝑛

𝑊𝑛𝑚𝑃𝑙−1(𝑚) + (1 + 𝜏𝑊𝑛𝑛)𝑃𝑙−1(𝑚), (1.15c)

= 𝜏 ∑
𝑚≠𝑛

𝑊𝑛𝑚𝑃𝑙−1(𝑚) + (1 − 𝜏 ∑
𝑚≠𝑛

𝑊𝑚𝑛)𝑃𝑙−1(𝑚), (1.15d)

from which we find

𝑃𝑙(𝑛) − 𝑃𝑙−1(𝑛)
𝜏

= ∑
𝑚≠𝑛

[𝑊𝑛𝑚𝑃𝑙−1(𝑚) − 𝑊𝑚𝑛𝑃𝑙−1(𝑛)]. (1.16)

Notice that the left-hand side of this equation describes the probability evolving.
The right-hand side has a term that increases probability (𝑊𝑛𝑚𝑃𝑙−1(𝑚)), and one that
decreases it (𝑊𝑚𝑛𝑃𝑙−1(𝑛)). Notice that they are associated with the fact that 𝑊𝑛𝑚
represents the transition rate for a state 𝑚 transitioning to 𝑛, while 𝑊𝑚𝑛 represents the
transition rate for 𝑛 to change into 𝑚. This can be seen from our previous definition of
𝑇𝑛𝑚 as 𝑃(𝑛|𝑚).

Let now 𝑡 = (𝑙 − 1)𝜏 and take the limit as 𝜏 → 0. We then get to

d𝑃𝑛
d𝑡

= ∑
𝑚≠𝑛

[𝑊𝑛𝑚𝑃𝑚(𝑡) − 𝑊𝑚𝑛𝑃𝑛(𝑡)], (1.17)

which is known as the master equation. Notice how it resembles a continuity equation
with current 𝐽𝑛 = ∑𝑚≠𝑛 [𝑊𝑛𝑚𝑃𝑚(𝑡) − 𝑊𝑚𝑛𝑃𝑛(𝑡)].

Notice that, due to the fact that ∑𝑛 𝑃𝑛 = 1 (normalization of probability), we have

∑
𝑛

d𝑃𝑛
d𝑡

= d
d𝑡

∑
𝑛

𝑃𝑛 = 0, (1.18)

implying that
∑

𝑛
∑
𝑚≠𝑛

[𝑊𝑛𝑚𝑃𝑚(𝑡) − 𝑊𝑚𝑛𝑃𝑛(𝑡)] = 0. (1.19)

This can also be seen by noticing how

d𝑃𝑛
d𝑡

= ∑
𝑚≠𝑛

[𝑊𝑛𝑚𝑃𝑚(𝑡) − 𝑊𝑚𝑛𝑃𝑛(𝑡)], (1.20a)

= ∑
𝑚

𝑊𝑛𝑚𝑃𝑚(𝑡) (1.20b)

and from the previously established fact that ∑𝑛 𝑊𝑛𝑚 = 0.
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In a steady state, we have d𝑃𝑛
d𝑡 = 0 for all 𝑛. Therefore, we get

∑
𝑚≠𝑛

[𝑊𝑛𝑚𝑃𝑚(𝑡) − 𝑊𝑚𝑛𝑃𝑛(𝑡)] = 0. (1.21)

That is, the net current carrying probability around vanishes. However, there are two
possibilities: either each term on the sum vanishes independently—which is known as the
detailed balance condition—, or at least some of them do not vanish, but their sum does.
In the former case, we have equilibrium. In the latter, nonequilibrium. It can be shown
that, for equilibrium, the probability distribution tends towards the Gibbs distribution. Reference

1.3 Entropy and Entropy Production in Stochastic Terms

Our goal is now to reformulate thermodynamics concepts in terms of these stochastic
ideas. In equilibrium Statistical Mechanics one has to postulate that entropy is given by

𝑆 = 𝑘𝐵 log Ω, (1.22)

where Ω is the number of accessible microstates of the system. In nonequilibrium Statistical
Mechanics, we’ll also have to make similar assumptions, that can be motivated, but not
proved.

We’ll assume that the entropy is given in terms of the probability distribution by

𝑆 = −𝑘𝐵 ∑
𝑛

𝑃𝑛 log 𝑃𝑛 (1.23)

(cf. the expressions for Gibbs and Shannon entropy).
We’ll also make a postulate about the entropy production, which was first made by

Schnakenberg (1976). We define

𝜎(𝑡) = 𝑘𝐵
2

∑
𝑛,𝑚

(𝑊𝑛𝑚𝑃𝑚 − 𝑊𝑚𝑛𝑃𝑛) log 𝑊𝑛𝑚𝑃𝑚
𝑊𝑚𝑛𝑃𝑛

. (1.24)

Notice each term of this expression has the form

(𝑥 − 𝑦) log 𝑥
𝑦

, (1.25)

which is always non-negative, but vanishes if the detailed balance holds.
If we define

𝑋𝑚𝑛 = 𝑘𝐵
2

log 𝑊𝑛𝑚𝑃𝑚
𝑊𝑚𝑛𝑃𝑛

(1.26)

and

𝐽𝑚𝑛 = 𝑊𝑛𝑚𝑃𝑚 − 𝑊𝑚𝑛𝑃𝑛, (1.27)
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then we can write the entropy production in the form of a sum of products of thermody-
namic forces and currents,

𝜎(𝑡) = ∑
𝑛,𝑚

𝐽𝑚𝑛𝑋𝑚𝑛. (1.28)

It is worth pointing out that one can describe the currents on a thermodynamic system
in a way analogous to electric currents: in terms of Kirchoff laws. See, e.g., Schnakenberg
1976.

We know the time derivative of the entropy and the entropy production are related. It
is then interesting to differentiate our prescription for entropy in order to see how exactly
they relate. We find

d𝑆
d𝑡

= −𝑘𝐵 ∑
𝑛

d𝑃𝑛
d𝑡

log 𝑃𝑛 − 𝑘𝐵 ∑
𝑛

𝑃𝑛
𝑃𝑛

d𝑃𝑛
d𝑡

, (1.29a)

= −𝑘𝐵 ∑
𝑛

d𝑃𝑛
d𝑡

log 𝑃𝑛 − 𝑘𝐵 ∑
𝑛

d𝑃𝑛
d𝑡

, (1.29b)

= −𝑘𝐵 ∑
𝑛

d𝑃𝑛
d𝑡

log 𝑃𝑛, (1.29c)

= −𝑘𝐵 ∑
𝑛,𝑚

𝑊𝑛𝑚𝑃𝑚 log 𝑃𝑛, (1.29d)

= −𝑘𝐵 ∑
𝑛,𝑚

(𝑊𝑛𝑚𝑃𝑚 − 𝑊𝑚𝑛𝑃𝑛) log 𝑃𝑛, (1.29e)

= 𝑘𝐵
2

∑
𝑛,𝑚

(𝑊𝑛𝑚𝑃𝑚 − 𝑊𝑚𝑛𝑃𝑛) log 𝑃𝑚
𝑃𝑛

, (1.29f)

where we used ∑𝑛 𝑃𝑛 = 1 (a constant) in the third line, ∑𝑚 𝑊𝑚𝑛 = 0 in the fifth line,
and essentially wrote 1 = 1

2 + 1
2 in the last line.

We see then that we can write

d𝑆
d𝑡

= 𝜎(𝑡) − 𝜙(𝑡), (1.30)

where the entropy flux 𝜙(𝑡) is given by

𝜙(𝑡) = −𝑘𝐵
2

∑
𝑛,𝑚

(𝑊𝑛𝑚𝑃𝑚 − 𝑊𝑚𝑛𝑃𝑛) log 𝑊𝑚𝑛
𝑊𝑛𝑚

. (1.31)

This expression makes sense as an entropy flux, because there are situations in which one
can define thermodynamic quantities5—such as temperature and the chemical potential—
and in which this expression will reduce to 𝜙(𝑡) = �̇�

𝑇 , as we’d expect from the Clausius
relation.

5We do not refer strictly to equilibrium in here, since in that case the detailed balance would hold
and the flux would vanish as a consequence. However, there are situations out of the equilibrium which
do admit a thermodynamic description. I think Proesmans and Fiore 2019 discusses examples of such
systems.
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It is also interesting to notice that we may write

𝜙(𝑡) = 𝑘𝐵 ∑
𝑛,𝑚

⟨𝑊𝑚𝑛 log 𝑊𝑚𝑛
𝑊𝑛𝑚

⟩ , (1.32)

where the angled brackets denote an ensemble average. The interest in this expression is
that we can numerically compute ensemble averages without knowledge of the specific
probability distribution, and the transition rates 𝑊𝑛𝑚 are assumed to be given in the
problem. Hence, we get an easy to use expression for the entropy flux. If we also have
d𝑆
d𝑡 = 0 (steady state), then 𝜙(𝑡) = 𝜎(𝑡) and we have an expression for the entropy
production.

This construction naturally incorporates the Second Law of Thermodynamics (as
stated in terms of the entropy production) in its formalism. However, we still haven’t
discussed the First Law of Thermodynamics.

The internal energy of a system will be given by

𝑈 = ∑
𝑛

𝐸𝑛(𝑡)𝑃𝑛(𝑡). (1.33)

If we differentiate this expression with respect to time, we find that there are two distinct
terms,

d𝑈
d𝑡

= ∑
𝑛

d𝐸𝑛
d𝑡

𝑃𝑛 + ∑
𝑛

𝐸𝑛
d𝑃𝑛
d𝑡

. (1.34)

The first term corresponds to changing the energy levels of the system, while keeping
the probabilities constant. This can be achieved, for example, by varying parameters of
the system, such as an external magnetic field, or the system’s pressure, and so on. Hence,
we can interpret the first term as representing work per time.

The second term represents the change in energy due to variation on the probability
of the state 𝑛 being the system’s microstate at a given time. Hence, it corresponds to
heat per time.

In consistency with the First Law, we then get

d𝑈
d𝑡

= �̇� + �̇�. (1.35)

Since we are dealing with stochastic processes, we can actually assign a probability
distribution to work. One can show that given a path in phase space, the probabilities for
work going forwards and in reverse through such a path will respect

𝑃𝐹(𝑊)
𝑃𝑅(−𝑊)

= 𝑒𝑊−Δ𝐹, (1.36)

which is a consequence of the Crooks Fluctuation Theorem6 (Crooks 1999), which we’ll
discuss on Section 1.4, where 𝑊 is the work done along the path and Δ𝐹 is the difference
in free energy along the transformation.

6Prof. Fiore referred to Eq. (1.36) as the “Jarzynski relation”, but I couldn’t find references to this.
However, Eq. (1.36) seems to be a consequence of what was obtained by Crooks (1999).
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Notice then that we have

⟨𝑒−𝑊⟩ = ∫
+∞

−∞
𝑒−𝑊𝑃𝐹(𝑊) d𝑊 , (1.37a)

= ∫
+∞

−∞
𝑒−𝑊𝑃𝑅(−𝑊)𝑒𝑊−Δ𝐹 d𝑊 , (1.37b)

= 𝑒−Δ𝐹 ∫
+∞

−∞
𝑃𝑅(−𝑊) d𝑊 , (1.37c)

= 𝑒−Δ𝐹, (1.37d)

which is known as the Jarzynski equality (Jarzynski 1997). Using Jensen’s inequality, we
have that ⟨𝑒−𝑊⟩ ≥ 𝑒−⟨𝑊⟩, from which it follows that

⟨𝑊⟩ ≥ Δ𝐹, (1.38)

which is a familiar relation from Thermodynamics (see Fermi 1956, Eq. (112), but beware
the sign convention on the definition of work).

1.4 Crooks Fluctuation Theorem

Since we used the Jarzynski relation, which can be seen as a consequence of the Crooks
Fluctuation Theorem, we might as well prove the theorem. The result we’ll prove is not
the same stated on Eq. (1.36) on the previous page, but a related, stronger one. Notice
that in Thermodynamics, 𝑊 − Δ𝐹 is a measure of the reversibility of a process (see
Fermi 1956, Sec. 17), vanishing when it is reversible and being positive otherwise. This is
extremely similar to entropy production. It is, in fact, entropy production in some sense. Which sense?
For further details, see the original work by Crooks (1999).

We’ll consider a sequence of microscopic states connected by some protocols. In this
way, we have a trajectory defined on state space. Our question will be, at first, to find
how the probabilities of this trajectory happening forwards and backwards are related.
This is illustrated on Fig. 1.3.

𝑖0 𝑖1 𝑖2 ⋯ 𝑖𝜏

𝜆1 𝜆2 𝜆3 𝜆𝜏

𝜆𝜏𝜆3𝜆2𝜆1

Figure 1.3: Illustration of the process considered in the Crooks Fluctuation Theorem. Changes
from a state 𝑖𝑛 to the next are mediated by some protocol 𝜆𝑛+1. We consider the
probabilities of both the forward and backwards trajectory happening.

From each state to the next, there is some difference in energy. We’d like to separately
consider the amount due to exchange of heat and the amount due to work. Following our
earlier definitions, heat is associated with a change in energy due to change of state, while
work is due to a change in protocol. We then define the quantities What exactly

is 𝐸(𝑖, 𝜆)?
Shouldn’t it
be 𝐸(𝑖)?– 12 –



Δ𝑊𝑡 ≡ 𝐸(𝑖𝑡, 𝜆𝑡+1) − 𝐸(𝑖𝑡, 𝜆𝑡), (1.39)

and

Δ𝑄𝑡 ≡ 𝐸(𝑖𝑡+1, 𝜆𝑡) − 𝐸(𝑖𝑡, 𝜆𝑡). (1.40)

Notice that Δ𝑊𝑡 +Δ𝑄𝑡 = Δ𝐸𝑡 = 𝐸(𝑖𝑡+1, 𝜆𝑡+1)−𝐸(𝑖𝑡, 𝜆𝑡), as we would expect. Summing
over the discrete times we get to the work and heat along the entire trajectory,

𝑊 ≡
𝜏−1
∑
𝑡=0

Δ𝑊𝑡 and 𝑄 ≡
𝜏−1
∑
𝑡=0

Δ𝑄𝑡, (1.41)

which satisfy 𝑊 + 𝑄 = 𝐸(𝑖𝜏, 𝜆𝜏) − 𝐸(𝑖0, 𝜆0). Notice that 𝑊 and 𝑄 are odd functions of
the trajectory: if we run the trajectory backwards, the work will be −𝑊 and the heat
−𝑄, in consistency with −𝑊 − 𝑄 = 𝐸(𝑖0, 𝜆0) − 𝐸(𝑖𝜏, 𝜆𝜏).

Let us then compute the probability of each trajectory happening. Assuming the
process is Markovian, we get

𝑃𝐹(𝑖0, 𝑖1, … , 𝑖𝜏)
𝑃𝑅(𝑖𝜏, 𝑖𝜏−1, … , 𝑖0)

=
𝑇𝜏,𝜏−1𝑇𝜏−1,𝜏−2 ⋯ 𝑇1,0𝑃(𝑖0)
𝑇𝜏−1,𝜏𝑇𝜏−2,𝜏−1 ⋯ 𝑇0,1𝑃(𝑖𝜏)

, (1.42)

where 𝑇𝑛𝑚 = 𝑃(𝑖𝑛|𝑖𝑚) are the elements of the transition matrix. To proceed, we’ll also
assume that the so-called local detailed balance holds:

𝑇𝑛,𝑛−1𝑒−𝛽𝐸(𝑖𝑛−1) = 𝑇𝑛−1,𝑛𝑒−𝛽𝐸(𝑖𝑛). (1.43)

Notice that this resembles the expression for the detailed balance (𝑇𝑛,𝑚𝑃𝑚 = 𝑇𝑚,𝑛𝑃𝑛,
with 𝑛 ≠ 𝑚 and no sum implied), apart from the facts that we are using the Gibbs
distribution for the probability and we’re only assuming it holds for “neighbor” states
in the chain. Since both sides of Eq. (1.43) are related to the same protocol 𝜆𝑛, we can
write Eq. (1.43) as

𝑇𝑛,𝑛−1

𝑇𝑛−1,𝑛
= 𝑒−𝛽(𝐸(𝑖𝑛,𝜆𝑛)−𝐸(𝑖𝑛−1,𝜆𝑛)) = 𝑒−𝛽Δ𝑄𝑛−1 , (1.44)

where we used our previous definition of the heat exchange when going from one state to
the other.

Using Eq. (1.44), Eq. (1.42) becomes

𝑃𝐹(𝑖0, 𝑖1, … , 𝑖𝜏)
𝑃𝑅(𝑖𝜏, 𝑖𝜏−1, … , 𝑖0)

= 𝑒−𝛽Δ𝑄𝜏−1𝑒−𝛽Δ𝑄𝜏−2 ⋯ 𝑒−𝛽Δ𝑄0
𝑃(𝑖0)
𝑃 (𝑖𝜏)

, (1.45a)

= 𝑒−𝛽𝑄 𝑃(𝑖0)
𝑃 (𝑖𝜏)

. (1.45b)

To proceed, let us now recall that our definition of entropy, Eq. (1.23) on page 9, lets
us write7

𝑆 = −𝑘𝐵 ∑
𝑛

𝑃𝑛 log 𝑃𝑛 = −𝑘𝐵 ⟨log 𝑃𝑛⟩ , (1.46)

7Prof. Fiore actually wrote Eq. (1.46) without the Boltzmann constant. Not sure if it was set to one
or something else.
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which we can interpret as an ensemble average. In particular, it invites us to interpret
− log 𝑃𝑛 as a notion of “microscopic entropy”. Eq. (1.45) on the previous page then
becomes

𝑃𝐹(𝑖0, 𝑖1, … , 𝑖𝜏)
𝑃𝑅(𝑖𝜏, 𝑖𝜏−1, … , 𝑖0)

= 𝑒−𝛽𝑄+log 𝑃(𝑖0)−log 𝑃(𝑖𝜏), (1.47a)

= 𝑒Σ𝐹 , (1.47b)

where Σ𝐹 is the entropy production, here defined in analogy with Eq. (1.30) on page 10,
which states the entropy production in the variation in entropy added to the incoming
heat flux. Notice that Σ𝐹 is odd in trajectory.

Let us now compute the probability of measuring an entropy production Σ when we
let the system evolve for a time 𝜏. In the forward trajectory, it will be given by

𝑃𝐹(Σ) = ⟨𝛿(Σ − Σ𝐹)⟩𝐹 , (1.48a)

= ∑
𝑖0,…,𝑖𝜏

𝛿(Σ − Σ𝐹)𝑃𝐹(𝑖0, … , 𝑖𝜏). (1.48b)

Similarly,

𝑃𝑅(Σ) = ⟨𝛿(Σ − Σ𝑅)⟩𝑅 , (1.49a)

= ∑
𝑖0,…,𝑖𝜏

𝛿(Σ − Σ𝑅)𝑃𝑅(𝑖𝜏, … , 𝑖0), (1.49b)

𝑃𝑅(−Σ) = ∑
𝑖0,…,𝑖𝜏

𝛿(Σ + Σ𝑅)𝑃𝑅(𝑖𝜏, … , 𝑖0), (1.49c)

where we used the fact that the Dirac delta is even. Notice, however, that Eq. (1.47)
means these expressions imply

𝑃𝐹(Σ) = ∑
𝑖0,…,𝑖𝜏

𝛿(Σ − Σ𝐹)𝑃𝐹(𝑖0, … , 𝑖𝜏), (1.50a)

= ∑
𝑖0,…,𝑖𝜏

𝛿(Σ − Σ𝐹)𝑃𝑅(𝑖𝜏, … , 𝑖0)𝑒Σ𝐹 , (1.50b)

= 𝑒Σ ∑
𝑖0,…,𝑖𝜏

𝛿(Σ − Σ𝐹)𝑃𝑅(𝑖𝜏, … , 𝑖0), (1.50c)

= 𝑒Σ ∑
𝑖0,…,𝑖𝜏

𝛿(Σ + Σ𝑅)𝑃𝑅(𝑖𝜏, … , 𝑖0), (1.50d)

= 𝑒Σ𝑃𝑅(−Σ), (1.50e)

where Eq. (1.50d) used the fact that the entropy production is odd in trajectory, and
hence Σ𝐹 = −Σ𝑅. We have thus arrived at the Crooks Fluctuation Theorem,

𝑃𝐹(Σ)
𝑃𝑅(−Σ)

= 𝑒Σ. (1.51)

Notice that it means the probability of measuring a negative microscopic entropy pro-
duction is not zero, but it is exponentially suppressed. This suppression means that it is
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difficult to explore these effects experimentally. Nevertheless, we see that a bright side of
the result is its generality: we only assumed the system to be Markovian and to satisfy the
local detailed balance, with no further assumptions on, e.g., being or not in equilibrium.

The Crooks Fluctuation Theorem might seem like a violation of the Second Law of
Thermodynamics, but it isn’t. Due to the fact that it employs a local form of entropy,
the Second Law does not apply. In fact, notice that if we now deal with averages, we find
that

⟨𝑒−Σ⟩ = ∫ 𝑒−Σ𝑃𝐹(Σ) dΣ , (1.52a)

= ∫ 𝑒−Σ𝑒+Σ𝑃𝑅(Σ) dΣ , (1.52b)

= 1. (1.52c)

The Jensen inequality then implies that

1 = ⟨𝑒−Σ⟩ ≥ 𝑒−⟨Σ⟩, (1.53)
⟨Σ⟩ ≥ 0, (1.54)

meaning the Crooks Fluctuation Theorem doesn’t only respect the Second Law, but
actually implies it.

2 Equilibrium Statistical Mechanics
Now that we know the differences between equilibrium and nonequilibrium, we’ll focus
firstly on the simpler case of equilibrium Statistical Mechanics. In this scenario, one
usually considers a system in thermal contact with a single reservoir, the properties of
which do not depend on time.

When working in equilibrium, the notions of transition rates won’t be so useful, for
we already know the probability distribution in advance: it is the Gibbs distribution,

𝑃𝑛 = 𝑒−𝛽𝐸𝑛

∑𝑚 𝑒−𝛽𝐸𝑚
. (2.1)

If the probability distribution is known, we don’t need to solve the master equation, and
as a consequence those ideas become unnecessary. Still, they will be useful when we come
back to nonequilibrium.

This will be a lightning review of equilibrium Statistical Mechanics. For further details,
hit the books (e.g. Kardar 2007b; Pathria and Beale 2022; Reichl 2016; Salinas 2001).

2.1 Canonical Ensemble

In the canonical ensemble, we deal with a fixed temperature 𝑇, so the system is assumed
to be exchanging heat with a given thermal bath. It is often convenient to define the
inverse temperature 𝛽 = 1

𝑘𝐵𝑇 , in terms of which we may write the partition function,

𝑍 = ∑
𝑛

𝑒−𝛽𝐸𝑛 . (2.2)
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Notice that we may write the mean energy in terms of the partition function as

⟨𝐸⟩ = ∑
𝑛

𝐸𝑛𝑃𝑛, (2.3a)

= ∑
𝑛

𝐸𝑛
𝑒−𝛽𝐸𝑛

𝑍
, (2.3b)

= − 1
𝑍

𝜕
𝜕𝛽

∑
𝑛

𝑒−𝛽𝐸𝑛 , (2.3c)

= − 1
𝑍

𝜕𝑍
𝜕𝛽

, (2.3d)

= − 𝜕
𝜕𝛽

log 𝑍, (2.3e)

where we employed the Gibbs distribution. Through a similar calculation, we can obtain
the second moment of the distribution for the energy by computing

⟨𝐸2⟩ = 1
𝑍

𝜕2𝑍
𝜕𝛽2 . (2.4)

Notice that these formulae imply that

𝜕 ⟨𝐸⟩
𝜕𝛽

= − 𝜕2

𝜕𝛽2 log 𝑍, (2.5a)

= − 𝜕
𝜕𝛽

( 1
𝑍

𝜕𝑍
𝜕𝛽

), (2.5b)

= 1
𝑍2 (𝜕𝑍

𝜕𝛽
)

2
− 1

𝑍
𝜕2𝑍
𝜕𝛽2 , (2.5c)

= ⟨𝐸⟩2 − ⟨𝐸2⟩ . (2.5d)

Our interest in this comes from the fact that the specific heat at constant volume can
be expressed as

𝑐𝑉 = 𝜕 ⟨𝐸⟩
𝜕𝑇

, (2.6a)

= d𝛽
d𝑇

𝜕 ⟨𝐸⟩
𝜕𝛽

, (2.6b)

= − 1
𝑘𝐵𝑇 2

𝜕 ⟨𝐸⟩
𝜕𝛽

, (2.6c)

=
⟨𝐸2⟩ − ⟨𝐸⟩2

𝑘𝐵𝑇 2 . (2.6d)

These notions, allied to the hypothesis that the system is extensive (meaning we can
write ⟨𝐸⟩ = 𝑁𝑢 and 𝑐𝑉 = 𝑁 ̃𝑐𝑉, where 𝑢 and ̃𝑐𝑉 are the energy and specific heat per particle,
respectively) let us see the connection of the canonical ensemble with thermodynamics.
Firstly, we recall the ergodic hypothesis: time averages of the system correspond to
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ensemble averages. This is widely used in Statistical Mechanics, but still lacks a general
proof. Assuming it, we notice that, as time passes, the energy of the system will oscillate
about ⟨𝐸⟩. Nevertheless, the oscillations become negligible in the thermodynamic limit,
𝑁 → +∞. Indeed,

lim
𝑁→+∞

√⟨(𝐸 − ⟨𝐸⟩)2⟩
⟨𝐸⟩

= lim
𝑁→+∞

√⟨𝐸2⟩ − ⟨𝐸⟩2

⟨𝐸⟩
, (2.7a)

= lim
𝑁→+∞

√𝑁𝑘𝐵𝑇 2 ̃𝑐𝑣
𝑁𝑢

, (2.7b)

= 0. (2.7c)

Hence, even though in the canonical ensemble the system is continuously trading energy
with the thermal bath, in the thermodynamics limit we can understand ⟨𝐸⟩ as the system’s
internal energy.

Two Level System

As an example, let us briefly consider a two level system, in which each of 𝑁 non-interacting
particles might either be in a ground state with 0 energy or in an excited state with 𝜖
energy. Since the particles are non-interacting, the partition function can be written as

𝑍 = 𝜁1 ⋅ 𝜁2 ⋯ 𝜁𝑁 = 𝜁𝑁, (2.8)

where each 𝜁 is understood as a “one-particle partition function”. For this problem, we
have

𝜁 = 1 + 𝑒−𝛽𝜖. (2.9)

Hence, the probability of finding a given particle in the ground state is

𝑃0 = 𝑒−𝛽⋅0

𝜁
= 1

1 + 𝑒−𝛽𝜖 , (2.10)

while the excited state has
𝑃1 = 𝑒−𝛽𝜖

𝜁
= 1

1 + 𝑒+𝛽𝜖 . (2.11)

These results resemble, but do not match, the Fermi–Dirac distribution. This is expected,
since only one fermion can be in each state at a time. Care to explain

this comment
any further?

It is interesting to remark that we are considering localized (i.e., distinguishable)
particles when making this computation. One can also understand this example as a
particular case of the Maxwell–Boltzmann distribution (see, e.g., Reif 2009, Chap. 9).
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Let us then use the partition function to compute physical observables. The internal
energy per particle is given by

𝑢 = − 1
𝑁

𝜕
𝜕𝛽

log 𝑍, (2.12a)

= − 𝜕
𝜕𝛽

log 𝜁, (2.12b)

= 𝜖𝑒−𝛽𝜖

1 + 𝑒−𝛽𝜖 , (2.12c)

= 𝜖
1 + 𝑒𝛽𝜖 . (2.12d)

It should be remarked that, in the canonical ensemble, the internal energy is not
minimized, the Helmholtz free energy is. This is in accordance with the fact from
Thermodynamics that a minimum of Helmholtz free energy corresponds to stable thermal
equilibrium (see Fermi 1956, Sec. 17).

The Helmholtz free energy per particle will be given by

𝑓 = −𝑘𝐵𝑇
𝑁

log 𝑍, (2.13a)

= −𝑘𝐵𝑇 log 𝜁, (2.13b)
= −𝑘𝐵𝑇 log(1 + 𝑒−𝛽𝜖). (2.13c)

Therefore, we see that the entropy per particle will be given by

𝑠 = 𝑢 − 𝑓
𝑇

, (2.14a)

= 𝑘𝐵𝛽(𝑢 − 𝑓), (2.14b)

= 𝑘𝐵𝛽𝜖
1 + 𝑒𝛽𝜖 + 𝑘𝐵 log(1 + 𝑒−𝛽𝜖). (2.14c)

Now that we know 𝑢, 𝑓, and 𝑠, we are able to compute any quantities we desire.
In order to better understand the system, we should consider a few “remarkable limits”.

Namely, how does it behave at low and high temperatures?
The low temperature limit corresponds to picking 𝑘𝐵𝑇 ≪ 𝜖, or, equivalently, to 𝛽𝜖 ≫ 1.

In this case, the exponential that occurs on the expression for the partition function leads
to a high suppression, so that high-energy states become less probable. Hence, we expect
for all particles to be on the ground state. Eqs. (2.12) to (2.14) then lead to

lim
𝛽𝜖≫1

𝑢 = 0, lim
𝛽𝜖≫1

𝑓 = 0, lim
𝛽𝜖≫1

𝑠 = 0. (2.15)

The high temperature limit means 𝑘𝐵𝑇 ≫ 𝜖, which is equivalent to 𝛽𝜖 ≪ 1. In this
case, there is essentially no suppression on the exponential that goes into the partition
function, and hence all states become equally likely. Eqs. (2.12) to (2.14) now imply

lim
𝛽𝜖≪1

𝑢 = 𝜖
2

, lim
𝛽𝜖≪1

𝑓 = −𝑘𝐵𝑇 log 2, lim
𝛽𝜖≪1

𝑠 = 𝑘𝐵 log 2. (2.16)
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Notice that these results means we have essentially 𝑁
2 in each of the two states. Further-

more, we recover the Boltzmann entropy formula for each particle, since each particle can
be in two possible states with equal probabilities.

It is also instructive for us to plot the expressions for the internal energy, entropy, and
specific heat as functions of the temperature. These are shown in Fig. 2.1 on the next
page. Notice that the specific heat is given by

𝑐 = 𝜕𝑢
𝜕𝑇

, (2.17a)

= −𝑘𝐵𝛽2 𝜕𝑢
𝜕𝛽

, (2.17b)

= 𝑘𝐵𝛽2𝜖2𝑒𝛽𝜖

(1 + 𝑒𝛽𝜖)2 . (2.17c)

It is particularly interesting that the specific heat attains a finite maximum. This
feature is a general property of systems with finitely many discrete states and it is known
as the Schottky anomaly.

Quantum Harmonic Oscillators

Let us next study the case of 𝑁 quantum harmonic oscillators subject to a thermal bath
at inverse temperature 𝛽 = 1

𝑘𝐵𝑇 . For a single oscillator, we have the energy

𝜖𝑛 = ℏ𝜔0(𝑛 + 1
2

), (2.18)

where 𝑛 is a non-negative integer. The partition function is then given by

𝑍 = ∑
{states}

𝑒−𝛽 ∑𝑁
𝑖=0 𝜖𝑖 , (2.19a)

= (∑
{𝑖}

𝑒−𝛽𝜖𝑖)
𝑁

, (2.19b)

where we used the assumption that the different oscillators do not interact1.
We can then obtain the partition function by dealing with a one-particle partition

function 𝜁. It will be given by

𝜁 =
+∞

∑
𝑛=0

𝑒−𝛽ℏ𝜔0(𝑛+ 1
2 ), (2.20a)

= 𝑒− 𝛽ℏ𝜔0
2

1 − 𝑒−𝛽ℏ𝜔0
. (2.20b)

1Interacting systems are more difficult to deal with. Later in the course, we’ll learn for example about
the transfer matrix approach to deal with them.
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Figure 2.1: Internal energy per particle 𝑢, entropy per particle 𝑠, and specific heat per particle 𝑐
as functions of temperature for the two-level system. Notice that the specific heat
attains a finite maximum. This is a general feature of systems with finitely many
discrete levels and is known as the Schottky anomaly.
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Therefore,

𝑍 = ( 𝑒− 𝛽ℏ𝜔0
2

1 − 𝑒−𝛽ℏ𝜔0
)

𝑁

. (2.21)

From the partition function we can obtain the internal energy, the Helmholtz free
energy, and the entropy just as before. Their expressions per particle will be given by

𝑢 = ℏ𝜔0
2

+ ℏ𝜔0
𝑒𝛽ℏ𝜔0 − 1

, (2.22)

𝑓 = ℏ𝜔0
2

+ 𝑘𝐵𝑇 log(1 − 𝑒−𝛽ℏ𝜔0), (2.23)

and

𝑠 = ℏ𝜔0
𝑇(𝑒𝛽ℏ𝜔0 − 1)

− 𝑘𝐵 log(1 − 𝑒−𝛽ℏ𝜔0). (2.24)

For low temperatures (𝑘𝐵𝑇 ≪ ℏ𝜔0 or 𝛽ℏ𝜔0 ≫ 1), Eqs. (2.22) to (2.24) lead to the
limiting behaviour

lim
𝛽ℏ𝜔0≫1

𝑢 = ℏ𝜔0
2

, lim
𝛽ℏ𝜔0≫1

𝑓 = ℏ𝜔0
2

, lim
𝛽ℏ𝜔0≫1

𝑠 = 0, (2.25)

which matches our expectation that all oscillators should be at the ground state.
The specific heat is given by

𝑐 = 𝑘𝐵𝛽2ℏ2𝜔2
0𝑒𝛽ℏ𝜔0

(𝑒𝛽ℏ𝜔0 − 1)2 , (2.26)

which implies
lim

𝛽ℏ𝜔0≫1
𝑐 = 𝑘𝐵𝛽2ℏ2𝜔2

0𝑒−𝛽ℏ𝜔0 . (2.27)

This model was originally proposed by Einstein to explain how the specific heat of
solids vanishes at low temperatures, and hence we see there is a qualitative agreement
between experiment and theory. Nevertheless, there is a quantitative disagreement with
experiment, since the correct behaviour at low temperatures should be ∼ 𝑇 3 instead of
an exponential decay. This was later corrected by Debye by introducing interactions in
the model (for a more detailed account, see Kardar 2007b, Sec. 6.2; Pathria and Beale
2022, Sec. 7.4).

At high temperatures (𝑘𝐵𝑇 ≫ ℏ𝜔0 or 𝛽ℏ𝜔0 ≪ 1), Eqs. (2.22) to (2.24) imply

lim
𝛽ℏ𝜔0≪1

𝑢 = 𝑘𝐵𝑇 , lim
𝛽ℏ𝜔0≪1

𝑓 = 𝑘𝐵𝑇 log(𝛽ℏ𝜔0), lim
𝛽ℏ𝜔0≪1

𝑠 = 𝑘𝐵(1 + log(𝑘𝐵𝑇
ℏ𝜔0

)),

(2.28)
while Eq. (2.26) leads to the specific heat at high temperatures

lim
𝛽ℏ𝜔0≪1

𝑐 = 𝑘𝐵, (2.29)
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in accordance with the Dulong–Petit law, that states the specific heat of a solid at high
temperatures should tend to a constant (this can be understood under the light of the
equipartition theorem, which is discussed, e.g., in Pathria and Beale 2022, Sec. 3.7; Salinas
2001, Sec. 6.3).

It is remarkable that, in Eq. (2.28) on the previous page, the expressions for the entropy
and Helmholtz free energy still involve ℏ, since the high temperature limit corresponds
to the classical limit. The occurrence of ℏ, however, is a necessity already in classical
statistical mechanics in order to ensure that it is recovered by the quantum mechanical
calculations. Perhaps discuss

this in greater
detail

The plots for 𝑢, 𝑠, and 𝑐 for the system of harmonic oscillators are shown in Fig. 2.2
on the following page.

2.2 Classical Statistical Physics

Motivated by the weird occurrence of an ℏ in an expression that should be classical
(Eq. (2.28) on the previous page), let us take a moment to discuss classical statistical
physics.

In classical systems, the states live in the phase space, which can be described in
terms of generalized coordinates and their conjugate momenta, 𝑞 and 𝑝, respectively. The
partition function for a system with Hamiltonian ℋ can then be in principle be written as

𝑍 = ∑
{𝜎}

𝑒−𝛽ℋ(𝜎) ?= ∫ 𝑒−𝛽ℋ(𝑞,𝑝) d𝑁𝑞 d𝑁𝑝 , (2.30)

where 𝜎 denotes an arbitrary state and denote 𝑞 = (𝑞1, 𝑞2, … , 𝑞𝑁) and 𝑝 = (𝑝1, 𝑝2, … , 𝑝𝑁),
so that our notation allows for an arbitrary number of degrees of freedom. The question
mark is in there because there is still an issue: the units on Eq. (2.30) do not match, since
the measure of the integral has its own units.

To solve this issue, we’ll introduce an arbitrary constant ℎ with dimensions of action
such that we can now write

𝑍 = ∫ 𝑒−𝛽ℋ(𝑞,𝑝) d𝑁𝑞 d𝑁𝑝
ℎ𝑁 . (2.31)

This constant can then be fixed by matching the classical predictions with the high
temperature limits of the quantum predictions. As the notation suggests, it will indeed
be Planck’s constant.

A way of interpreting this is that ℎ gives us a measure of “granularity” of phase space
in the sense that it converts the volume of phase space and the actual number of states.

Let us now consider a couple of examples.

Classical Harmonic Oscillators

Let us begin with a system of 𝑁 classical harmonic oscillators, which we’ll then expect
to reproduce the high energy behavior of our quantum calculation. The Hamiltonian is

– 22 –



0

𝑢

0

𝑠

0 2 4 6 8 10 12 14
𝑘𝐵𝑇
ℏ𝜔0

0

𝑘𝐵

𝑐

Figure 2.2: Internal energy per particle 𝑢, entropy per particle 𝑠, and specific heat per particle 𝑐
as functions of temperature for a system of 𝑁 non-interacting quantum harmonic
oscillators. As the temperature gets larger, the specific heat tends to a constant, in
accordance with the Dulong–Petit law. It also vanishes for small temperatures, in
qualitative agreement with experiment.
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given by

ℋ =
𝑁

∑
𝑖=1

𝑝2
𝑖

2𝑚
+ 𝑚𝜔2

0𝑞2
𝑖

2
. (2.32)

Therefore, the partition function becomes

𝑍 = ∫ exp(−𝛽(
𝑁

∑
𝑖=1

𝑝2
𝑖

2𝑚
+ 𝑚𝜔2

0𝑞2
𝑖

2
))d𝑁𝑞 d𝑁𝑝

ℎ𝑁 , (2.33a)

= (∫ exp(−𝛽( 𝑝2

2𝑚
+ 𝑚𝜔2

0𝑞2

2
))d𝑞 d𝑝

ℎ
)

𝑁

, (2.33b)

= ( 1
ℎ

√2𝜋𝑚
𝛽

√ 2𝜋
𝛽𝑚𝜔2

0
)

𝑁

, (2.33c)

= ( 2𝜋
𝛽ℎ𝜔0

)
𝑁

, (2.33d)

= 1
𝛽𝑁ℏ𝑁𝜔𝑁

0
, (2.33e)

which leads to

𝑢 = 𝑘𝐵𝑇 , (2.34)
𝑓 = 𝑘𝐵𝑇 log(𝛽ℏ𝜔0), (2.35)

and

𝑠 = 𝑘𝐵(1 + log(𝑘𝐵𝑇
ℏ𝜔0

)), (2.36)

which match Eq. (2.28) on page 21.

Classical Ideal Gas

A particularly interesting example for us to consider is that of a classical ideal gas. There
are two main reasons for that:

i. we’ll be able to recover the we’ll known equations of state, and hence understand
how to derive them from first principles;

ii. our initial approach will lead to a wrong expression for the entropy that will need
to be corrected, hence paving the way for further discussion.

We’ll be dealing with a gas comprised of 𝑁 particles which are assumed not to interact.
Furthermore, we assume it to be isotropic (hence, we’re ignoring effects due to gravity, for
example). The Hamiltonian is then given by

ℋ =
𝑁

∑
𝑖=1

𝑝2
𝑥,𝑖

2𝑚
+

𝑝2
𝑦,𝑖

2𝑚
+

𝑝2
𝑧,𝑖

2𝑚
= 1

2𝑚

𝑁
∑
𝑖=1

‖p𝑖‖
2. (2.37)
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Let us begin with the naïve computation. The partition function would then be given
by

𝑍 = ∫ exp(− 𝛽
2𝑚

𝑁
∑
𝑖=1

‖p𝑖‖
2)d3𝑁𝑞 d3𝑁𝑝

ℎ3𝑁 , (2.38a)

= 1
ℎ3𝑁 [∫ exp(−𝛽‖p‖2

2𝑚
) d3𝑞 d3𝑝]

𝑁

, (2.38b)

= 𝑉 𝑁

ℎ3𝑁 [∫ exp(−
𝛽(𝑝2

𝑥 + 𝑝2
𝑦 + 𝑝2

𝑧)
2𝑚

) d𝑝𝑥 d𝑝𝑦 d𝑝𝑧]
𝑁

, (2.38c)

= 𝑉 𝑁

ℎ3𝑁 [2𝜋𝑚
𝛽

]
3𝑁
2

. (2.38d)

Using this wrong partition function, we get to the correct internal energy 𝑈,

𝑈 = − 𝜕
𝜕𝛽

log 𝑍 = 3
2

𝑁𝑘𝐵𝑇 . (2.39)

Nevertheless, it leads us to the wrong Helmholtz free energy 𝐹. In spite of this, we
can get to the correct expression for the pressure by doing

𝑝 = (𝜕𝐹
𝜕𝑉

)
𝑇
, (2.40a)

= 𝑘𝐵𝑇 𝜕
𝜕𝑉

log 𝑍, (2.40b)

= 𝑁𝑘𝐵𝑇
𝑉

. (2.40c)

We can see the issue arising by explicitly computing the Helmholtz free energy, which
leads us to

𝐹 = −𝑘𝐵𝑇 log 𝑍, (2.41a)

= −𝑁𝑘𝐵𝑇[log( 𝑉
ℎ3 ) + 3

2
log(2𝜋𝑚

𝛽
)], (2.41b)

which is not extensive in 𝑉. Hence, we’re doing something wrong.
It is particularly curious that we did get two equations of state correctly, as we can see

on Eqs. (2.39) and (2.40). From Thermodynamics, we know this is enough to characterize
the system completely. One may then wonder whether the issue in here lies in Statistical
Mechanics or was already there in Thermodynamics, putting in risk our model of an ideal
gas. Thermodynamics is safe, though: the result that two equations of state are sufficient
to characterize a system follows from the assumption that entropy is extensive, and hence
it does not hold in our case. If we decide to compute the free energy per unit particle
from our equations of state and then assume extensivity explicitly, we’ll be able to obtain
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the correct expression known from thermodynamics. The question is then: why isn’t our
expression as taken directly from the partition function matching the correct expression?

Eq. (2.38) on the previous page shows us that we’re currently considering the partition
function

𝑍 = 𝜁𝑁, (2.42)

where the one-particle partition function 𝜁 is given by

𝜁 = 𝑉
ℎ3 [2𝜋𝑚

𝛽
]

3
2
. (2.43)

We’ll make an ad hoc assumption: the partition function is actually given by

𝑍 = 𝜁𝑁

𝑁!
= 𝑉 𝑁

𝑁!
[2𝜋𝑚

𝛽ℎ2 ]
3𝑁
2

. (2.44)

There are justification for this assumption. For example, it is necessary to recover
the classical results from the quantum mechanical results (see Pathria and Beale 2022,
Sec. 3.5 and references therein). Another point of view is that it must be introduced to
account for the indistinguishability of the gas’ particles2. At last, we can simply justify it
in an ad hoc manner: it is needed because without it the result is wrong.

Using this new expression for the partition function, we get to3

log 𝑍 = 𝑁 log 𝜁 − log 𝑁!, (2.45a)
= 𝑁 log 𝜁 − 𝑁 log 𝑁 + 𝑁𝒪(log 𝑁), (2.45b)

≈ 𝑁[log 𝜁
𝑁

+ 1], (2.45c)

where we employed Stirling’s approximation on Eq. (2.45b). As a consequence, the
Helmholtz free energy now reads

𝐹 = −𝑁𝑘𝐵𝑇[log 𝜁
𝑁

+ 1], (2.46a)

= −𝑁𝑘𝐵𝑇[log( 𝑉
𝑁

1
ℎ3 (2𝜋𝑚

𝛽
)

3
2
) + 1], (2.46b)

= −𝑁𝑘𝐵𝑇[log( 𝑉
𝑁

1
𝜆3 ) + 1], (2.46c)

2Prof. Fiore disagrees with this justification since we can always distinguish classical particles by
following their trajectories, a point of view shared by Kardar (2007b, p. 109). Caticha (2019) argues that
it doesn’t matter whether the particles are or not distinguishable, but rather if their distinguishability
interests us.

3It is curious that in the case of finite 𝑁 the results will lead to a non-extensive entropy, due to the
remaining terms in the Stirling approximation. In the literature, there seems to be at least one claim that
entropy will actually not be exactly extensive (see Peters 2014).
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where in the last line we defined the thermal wavelength 𝜆 by

𝜆 = ℎ( 𝛽
2𝜋𝑚

)
1
2

(2.47)

Notice that Eq. (2.46) on the previous page is indeed extensive on volume and number of
particles, as it should be.

We may then compute the entropy for an ideal gas. It will be given by

𝑆 = 𝑈 − 𝐹
𝑇

, (2.48a)

= 3
2

𝑁𝑘𝐵 + 𝑁𝑘𝐵[log( 𝑉
𝑁𝜆3 ) + 1], (2.48b)

= 𝑁𝑘𝐵[log( 𝑉
𝑁𝜆3 ) + 5

2
], (2.48c)

= 𝑁𝑘𝐵[log 𝑉
𝑁

+ log 1
ℎ3 + 3

2
log(2𝜋𝑚𝑘𝐵𝑇) + 5

2
], (2.48d)

= 𝑁𝑘𝐵[3
2

log 𝑘𝐵𝑇 + log 𝑉
𝑁

− 3 log ℎ + 3
2

log(2𝜋𝑚) + 5
2

]. (2.48e)

Let us now perform the same calculation with the equations of state we previously
obtained, Eqs. (2.39) and (2.40) on page 25. They yield

1
𝑇

= 3𝑁𝑘𝐵
2𝑈

= 3𝑘𝐵
2𝑢

= ( 𝜕𝑠
𝜕𝑢

)
𝑣
, (2.49a)

𝑝
𝑇

= 𝑁𝑘𝐵
𝑉

= 𝑘𝐵
𝑣

= (𝜕𝑠
𝜕𝑣

)
𝑢
, (2.49b)

which can be integrated to obtain

𝑠(𝑢, 𝑣) = 3
2

𝑘𝐵 log 𝑢 + 𝑘𝐵 log 𝑣 + 𝑠0, (2.50)

where 𝑠0 is some integration constant. If we explicitly impose extensivity of entropy, we’ll
obtain

𝑆(𝑈, 𝑉 , 𝑁) = 𝑁𝑠(𝑢, 𝑣), (2.51a)

= 3
2

𝑁𝑘𝐵 log 𝑈
𝑁

+ 𝑁𝑘𝐵 log 𝑉
𝑁

+ 𝑁𝑠0, (2.51b)

= 𝑁𝑘𝐵[3
2

log(3
2

𝑘𝐵𝑇) + log 𝑉
𝑁

+ 𝑠0
𝑘𝐵

], (2.51c)

= 𝑁𝑘𝐵[3
2

log 𝑘𝐵𝑇 + log 𝑉
𝑁

+ log 3
2

+ 𝑠0
𝑘𝐵

]. (2.51d)
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2.3 Gases with Diatomic Molecules

Classical Theory

For classical systems, the mean energy always has the form4

𝑈 = 𝑓
2

𝑁𝑘𝐵𝑇 , (2.52)

where 𝑓 is the number of quadratic terms on the Hamiltonian (i.e., essentially the number
of degrees of freedom). Hence, for harmonic oscillators, we have 𝑈 = 𝑁𝑘𝐵𝑇. For a
monoatomic ideal gas, 𝑈 = 3

2𝑁𝑘𝐵𝑇. For an ideal gas made of rigid diatomic molecules,
𝑈 = 5

2𝑁𝑘𝐵𝑇. If the molecules of this diatomic ideal gas can vibrate, 𝑈 = 7
2𝑁𝑘𝐵𝑇.

For all ideal gases, however, the pressure is the same: since they are non-interacting by
definition, the dependence on the positional degrees of freedom is the same, so the volume
appears on the calculation in the same way it did for the monoatomic gas. Since the
pressure is deduced from the volume dependency, the equation of state for the pressure is
the same for all ideal gases. On Section 2.4 we’ll consider interactions among different
molecules in the Van der Waals gas, which will lead to a different expression for the
pressure.

To figure out the thermodynamic properties of the diatomic gas, let us start by noticing
the kinetic energy of a single molecule is given by

𝐾 = 𝑚1‖ ̇r1‖2

2
+ 𝑚2‖ ̇r2‖2

2
, (2.53)

where r1 and r2 are the positions of the atoms composing the molecule as measured from
the laboratory reference frame. We may then define the position of the center of mass, R,
and the separation between the particles, r, by

R = 𝑚1r1 + 𝑚2r2
𝑚1 + 𝑚2

and r = r1 − r2. (2.54)

In terms of these variables the kinetic energy can be written as

𝐾 = 𝑀‖ ̇R‖ 2

2
+ 𝜇‖ ̇r‖2

2
, (2.55)

where we also defined
𝑀 = 𝑚1 + 𝑚2 and 𝜇 = 𝑚1𝑚2

𝑀
. (2.56)

It is convenient to express the terms related to r in spherical coordinates. We then get

𝜇𝑟2

2
= 𝜇

2
( ̇𝑟2 + 𝑟2 ̇𝜃2 + 𝑟2 sin2 𝜃 + ̇𝜙2), (2.57)

4This is know as the equipartition theorem, discussed, e.g., by Pathria and Beale (2022, Sec. 3.7) and
Salinas (2001, Sec. 6.3).
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and find the Lagrangian

𝐿 = 𝐾 − 𝑉 , (2.58a)

= 𝑀‖Ṙ‖ 2

2
+ 𝜇

2
( ̇𝑟2 + 𝑟2 ̇𝜃2 + 𝑟2 sin2 𝜃 + ̇𝜙2) − 𝑉 , (2.58b)

where 𝑉 is some potential that might later model the oscillations of the molecule. Notice
that the first term of Eq. (2.58b) corresponds to the translational degrees of freedom, while
the three following terms correspond to rotational and vibrational degrees of freedom.
Translation is already present for monoatomic gases, but rotations and vibrations are a
new feature.

The Hamiltonian for a single molecule is then

𝐻 = ‖p𝑅‖2

2𝑀
+ 𝑝2

𝑟
2𝜇

+
𝑝2

𝜃
2𝜇𝑟2 +

𝑝2
𝜙

2𝜇𝑟2 sin2 𝜃
+ 𝑉 . (2.59)

For a rigid molecule, similar to a dumbbell, we’ll have 𝑝𝑟 = 0 and 𝑉 = 0 (non-
interacting gas, no internal interactions). Let us denote the fixed distance between the
two atoms by 𝑏. In this case, the Hamiltonian simplifies to

𝐻 = ‖p𝑅‖2

2𝑀
+

𝑝2
𝜃

2𝜇𝑏2 +
𝑝2

𝜙

2𝜇𝑏2 sin2 𝜃
, (2.60)

meaning it has five quadratic terms. As a consequence, the internal energy will be

𝑈 = 5
2

𝑁𝑘𝐵𝑇 . (2.61)

For a vibrating molecule, the potential has to be that of a harmonic oscillator, so we’ll
have 𝑝𝑟 ≠ 0 and 𝑉 ∝ 𝑟20. This time, the Hamiltonian becomes

𝐻 = ‖p𝑅‖2

2𝑀
+ 𝑝2

𝑟
2𝜇

+
𝑝2

𝜃
2𝜇𝑟2 +

𝑝2
𝜙

2𝜇𝑟2 sin2 𝜃
+ 𝑚𝜔2𝑟2

2
, (2.62)

with seven quadratic terms. Therefore, the internal energy is

𝑈 = 7
2

𝑁𝑘𝐵𝑇 . (2.63)

For completeness, let us compute the partition function for the rigid, dumbbell-like
molecule. It will be given by

𝑍 = 𝜁𝑁

𝑁!
, (2.64)
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where the one-molecule partition function 𝜁 is given by

𝜁 = ∫ 𝑒−𝛽𝐻 d3𝑅 d3𝑝𝑅 d𝜃 d𝑝𝜃 d𝜙 d𝑝𝜙

ℎ5 , (2.65a)

= 𝑉
ℎ5 ∫ 𝑒

−𝛽[ ∥p𝑅∥2

2𝑀 + 𝑝2
𝜃

2𝜇𝑏2 +
𝑝2

𝜙
2𝜇𝑏2 sin2 𝜃

]
d3𝑝𝑅 d𝜃 d𝑝𝜃 d𝜙 d𝑝𝜙 , (2.65b)

= 𝑉
ℎ5 ∫ (2𝜋𝑀

𝛽
)

3
2

(2𝜋𝜇𝑏2

𝛽
)

1
2

(2𝜋𝜇𝑏2 sin2 𝜃
𝛽

)
1
2

d𝜃 d𝜙 , (2.65c)

= (2𝜋) 7
2 𝑉

ℎ5𝛽 5
2

𝑀 3
2 𝜇𝑏2 ∫

𝜋

0
sin 𝜃 d𝜃 , (2.65d)

= 2(2𝜋) 7
2 𝑉

ℎ5𝛽 5
2

𝑀 3
2 𝜇𝑏2 ∫

𝜋

0
, (2.65e)

= 4𝜋𝑉
ℎ5𝛽 5

2
(2𝜋𝑀)

3
2 (2𝜋𝜇𝑏2). (2.65f)

Do notice that on Eq. (2.65a) the integral is being taken in phase space, so there is no
Jacobian due to the choice of spherical coordinates.

From Eq. (2.65), it is then straightforward to obtain that

𝑈 = 5
2

𝑁𝑘𝐵𝑇 , (2.66)

𝑐𝑉 = 5
2

𝑁𝑘𝐵, (2.67)

𝑝𝑉 = 𝑁𝑘𝐵𝑇 , (2.68)

as previously claimed.

Quantum Theory

Eq. (2.67), obtained with the classical theory, claims that the specific heat of a gas of
diatomic molecules is constant. However, that is not true. Experimentally, a minimum
amount of energy is needed to activate the rotational and vibrational degrees of freedom,
which leads to the graph of specific heat as a function of temperature having a few plateaus,
corresponding to the temperatures in which the new degrees of freedom become relevant
(for graphs and experimental data, see Pathria and Beale 2022, Sec. 6.5.B; Salinas 2001,
Sec. 8.4; Wannier 1987, Chap. 11). The temperature dependency of the specific heat is
sketched on Fig. 2.3 on the next page.

While classical theory fails to explain why the diatomic gas behaves as if it was
monoatomic, quantum theory succeeds. To understand how, let us analyse the rotational
degrees of freedom in particular. This is possible because the partition function can be
decomposed as a product of simpler partition functions, (see Salinas 2001, Sec. 8.4).

Quantum mechanically, the rotational Hamiltonian of a single molecule will be

�̂�rot =
̂𝐽2

2𝐼
, (2.69)
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𝑘𝐵

𝑐 𝑉

Figure 2.3: Sketch of the specific heat per molecule of a diatomic ideal gas of heteromolecules ( i.e.,
each molecule is composed of two different nuclei). The characteristic bump before
the specific heat reaches 5

2 𝑘𝐵 is typical of diatomic gases composed of heteromolecules.
As higher temperatures are achieved, new degrees of freedom get activated and the
specific heat increases. The figure is adapted from the figures given by Chabay and
Sherwood (2015, Sec. 12.9), Pathria and Beale (2022, Sec. 6.5.B), Salinas (2001,
Sec. 8.4), and Wannier (1987, Chap. 11)

where 𝐼 is the molecule’s moment of inertia. We know that ̂𝐽2 has the eigenstates

̂𝐽2 |𝑙, 𝑚⟩ = ℏ2𝑙(𝑙 + 1) |𝑙, 𝑚⟩ , (2.70)

where 𝑙 ∈ ℕ0, −𝑙 ≤ 𝑚 ≤ 𝑙, and each energy level has a (2𝑙 + 1)-fold degeneracy. Therefore,
the “one-molecule rotational partition function” is

𝜁rot =
+∞

∑
𝑙=0

𝑙
∑

𝑚=−𝑙
𝑒− 𝛽ℏ2𝑙(𝑙+1)

2𝐼 , (2.71a)

=
+∞

∑
𝑙=0

(2𝑙 + 1)𝑒− 𝛽ℏ2𝑙(𝑙+1)
2𝐼 . (2.71b)

This expression can be computed numerically, but not analytically. In spite of this
difficulty, we can obtain analytical expressions for the remarkable limits of high and low
temperatures.

At low temperatures, we have 𝛽ℏ2

2𝐼 ≫ 1, so rotational energy is much lower than
thermal energy. As a consequence, high values of 𝑙 are suppressed and we can approximate
𝜁rot by the first two terms of the sum. We get

𝜁rot ≈
1

∑
𝑙=0

(2𝑙 + 1)𝑒− 𝛽ℏ2𝑙(𝑙+1)
2𝐼 , (2.72a)

= 1 + 3𝑒− 𝛽ℏ2
𝐼 . (2.72b)
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From Eq. (2.72) on the preceding page, we see the “rotational Helmholtz free energy
per molecule” is given by

𝑓rot = −𝑘𝐵𝑇 log 𝜁rot, (2.73a)

= −𝑘𝐵𝑇 log(1 + 3𝑒− 𝛽ℏ2
𝐼 ), (2.73b)

≈ −3𝑘𝐵𝑇 𝑒− 𝛽ℏ2
𝐼 . (2.73c)

Eq. (2.72) on the previous page also leads to

𝑢rot = − 𝜕
𝜕𝛽

log 𝜁rot, (2.74a)

≈ 3ℏ2

𝐼
𝑒− 𝛽ℏ2

𝐼 , (2.74b)

and hence

𝑐rot = 𝜕𝑢
𝜕𝑇

≈ 3𝑘𝐵(𝛽ℏ2

𝐼
)

2

𝑒− 𝛽ℏ2
𝐼 , (2.75)

which tends to zero for temperatures much smaller than the “rotational temperature”
𝑇𝑅 = ℏ2

2𝑘𝐵𝐼 , showing the rotational degrees of freedom “freeze” at low temperatures. The
rotational (and vibrational) temperatures for some gases are shown on Table 2.1.

Table 2.1: Rotational and vibrational temperatures for some diatomic gases. Taken from Salinas
2001, p. 156.

Gas 𝑇𝑅 (K) 𝑇𝑉 (103 K)
H2 85.4 6.10
N2 2.86 3.34
O2 2.07 2.23
CO 2.77 3.07
NO 2.42 2.69
HCl 15.2 4.14

For high temperatures (𝛽ℏ2

2𝐼 ≪ 1), there is a very small spacing between different
energy levels, which allows us to approximate the sum on Eq. (2.71) on the previous page
by an integral, which leads us to

𝜁rot =
+∞

∑
𝑙=0

(2𝑙 + 1)𝑒− 𝛽ℏ2𝑙(𝑙+1)
2𝐼 , (2.76a)

= ∫
+∞

0
(2𝜉 + 1)𝑒− 𝛽ℏ2𝜉(𝜉+1)

2𝐼 d𝜉 , (2.76b)

= ∫
+∞

0
𝑒− 𝛽ℏ2𝑢

2𝐼 d𝑢 , (2.76c)

= 2𝑘𝐵𝑇 𝐼
ℏ2 , (2.76d)
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where on Eq. (2.76c) on the preceding page we performed the substitution 𝑢 = 𝜉(𝜉 + 1).
Notice that Eq. (2.76) on the previous page will then lead to the conclusion that

𝑐rot = 𝑘𝐵, corresponding to all rotational degrees of freedom being activated and matching
the classical prediction, as expected.

Instead of just approximating the sum by an integral on Eq. (2.76) on the preceding
page, we could be careful and use the Euler–MacLaurin expansion formula (see Abramowitz
and Stegun 1972; Arfken, Weber, and Harris 2013, Sec. 12.3), as Salinas (2001, Sec. 8.4)
does, to get the asymptotic expression

𝜁rot = 𝑇
𝑇𝑅

[1 + 1
3

(𝑇𝑅
𝑇

) + 1
15

(𝑇𝑅
𝑇

)
2

+ ⋯], (2.77)

which leads to the specific heat

𝑐rot = 𝑘𝐵[1 + 1
45

(𝑇𝑅
𝑇

)
2

+ ⋯], (2.78)

from which we can see that the specific heat will tend to 𝑘𝐵 for 𝑇 ≫ 𝑇𝑅. For hetero-
molecules, the dots on Eq. (2.78) predict the bump of Fig. 2.3 on page 31, matching
experiment.

A similar analysis can be carried out for the vibrational degree of freedom, which can
be modeled as a harmonic oscillator. We’ll get a similar result that the degree of freedom
“freezes” at low temperatures. The specific heat will be given by Eq. (2.26) on page 21,
which we previously obtained when studying an ensemble of harmonic oscillators.

Our main lesson is then that, in polyatomic molecules, we are often able to deal with
each degree of freedom separately. For some more details on polyatomic molecules, Pathria
and Beale (see 2022, Sec. 6.5.C).

2.4 Interactions and the Virial Expansion

So far, we have only considered non-interacting systems, which, albeit simple, are not
realistic. We won’t be able to deal exactly with interactions, but it is possible to obtain
approximate expressions. In this section, we’ll see one such method and illustrate it with
the Van der Waals gas, the most famous model of a “real” gas. For some more information,
one can see, e.g., the texts by Kardar (2007b, Chap. 5), Pathria and Beale (2022, Chap.
10), and Salinas (2001, Sec. 6.4).

For an ideal gas, the equation of state for pressure reads

𝑝
𝑘𝐵𝑇

= 1
𝑣

, (2.79)

and we have 𝑝 = 𝑝(𝑇 , 𝑣) in general. Hence, it is reasonable to expect we can write the
equation of state for more real gases in the form

𝑝
𝑘𝐵𝑇

= 1
𝑣

+ 𝐴(𝑇 )
𝑣2 + 𝐵(𝑇 )

𝑣3 + ⋯ , (2.80)
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which is know as the virial expansion. We’d like then to compute the virial coefficients 𝐴,
𝐵, and so on from first principles. We’ll focus on only the first coefficient, 𝐴.

The actual equation of state we’ll try to understand from first principles is that of a
Van der Waals gas,

𝑝 = 𝑘𝐵𝑇
𝑣 − 𝑏

− 𝑎
𝑣2 , (2.81)

where 𝑎 and 𝑏 are constants. As we shall see, we can interpret 𝑏 as representing the
finite volume of the gas’ molecules and 𝑎 as representing the intermolecular interactions,
which are assumed to behave as hard spheres with a small attractive potential. As
illustrated in Fig. 2.4 on the following page, this model provides a simplified version of
the Lennard-Jones potential, which is the typical potential for intermolecular interactions,
but is harder to treat.

We’ll begin with a general approach and impose the hard sphere potential only at
the end, so we’ll also derive a more general expression that applies to a wide class of
interactions.

We assume the interaction potential to depend solely on the distances between
molecules, 𝑉 = 𝑉 (∥r𝑖 − r𝑗∥). This time, we can’t use a one-particle partition function, so
we write 𝑍 as

𝑍 = 1
𝑁!

∫ 𝑒−𝛽𝐻(𝑞,𝑝) d3𝑁𝑞 d3𝑁𝑝
ℎ3𝑁 , (2.82a)

= 1
𝑁!

∫ 𝑒
−𝛽(∑𝑁

𝑖=1
∥p𝑖∥2

2𝑚 +∑𝑖<𝑗 𝑉 (∥r𝑖−r𝑗∥)) d3𝑁𝑞 d3𝑁𝑝
ℎ3𝑁 , (2.82b)

where the sum over 𝑖 and 𝑗 with the condition 𝑖 < 𝑗 prevents us from overcounting the
interactions. While the integrals over generalized coordinates got more complicated, the
integrals over momenta work just like the ideal gas, leading us to

𝑍 = 1
𝑁!ℎ3𝑁 (2𝜋𝑚

𝛽
)

3𝑁
2

∫ 𝑒−𝛽 ∑𝑖<𝑗 𝑉 (∥r𝑖−r𝑗∥) d3𝑁𝑞 , (2.83a)

= 1
𝑁!ℎ3𝑁 (2𝜋𝑚

𝛽
)

3𝑁
2

𝑄𝑁, (2.83b)

where 𝑄𝑁 is given by

𝑄𝑁 ≡ ∫ 𝑒−𝛽 ∑𝑖<𝑗 𝑉 (∥r𝑖−r𝑗∥) d3𝑁𝑞 , (2.84a)

= ∫ ∏
𝑖<𝑗

𝑒−𝛽𝑉 (∥r𝑖−r𝑗∥)
𝑁

∏
𝑘=1

d3𝑟𝑘 . (2.84b)

For simplicity, let us denote 𝑉𝑖𝑗 ≡ 𝑉 (∥r𝑖 − r𝑗∥). It will also be convenient to define

𝑓𝑖𝑗 = 𝑒−𝛽𝑉𝑖𝑗 − 1, (2.85)

for 𝑓𝑖𝑗 will remain finite when 𝑉𝑖𝑗 diverges (see Fig. 2.5 on page 36) and overall make the
calculations simpler.
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(a) Lennard-Jones potential. Typical shape of the potential for intermolecular interactions.
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(b) Potential for hard sphere scattering with a small attraction.

Figure 2.4: A simplification of the Lennard-Jones potential is a potential for hard sphere scattering
with a small attractive region.
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𝑟0

𝑉
𝑓

Figure 2.5: While the Lennard-Jones potential diverges at the origin, the function 𝑓 defined by
Eq. (2.85) on page 34 is well-behaved everywhere.

In terms of this new function, we can write 𝑄𝑁 as

𝑄𝑁 = ∫ ∏
𝑖<𝑗

(1 + 𝑓𝑖𝑗)
𝑁

∏
𝑘=1

d3𝑟𝑘 . (2.86)

Notice that the product ∏𝑖<𝑗(1 + 𝑓𝑖𝑗) has the form

∏
𝑖<𝑗

(1 + 𝑓𝑖𝑗) = (1 + 𝑓12)(1 + 𝑓13)(1 + 𝑓14) ⋯ (1 + 𝑓1𝑁)(1 + 𝑓23) ⋯ (1 + 𝑓𝑁−1,𝑁), (2.87a)

= 1 + ∑
𝑖<𝑗

𝑓𝑖𝑗 + ⋯ , (2.87b)

where the dots include terms quadratic or higher on the 𝑓𝑖𝑗. Our first approximation will
consist on neglecting such terms. Hence, we’ll write

∏
𝑖<𝑗

(1 + 𝑓𝑖𝑗) ≈ 1 + ∑
𝑖<𝑗

𝑓𝑖𝑗. (2.88)

With this approximation, 𝑄𝑁 can be written as

𝑄𝑁 = ∫(1 + ∑
𝑖<𝑗

𝑓𝑖𝑗)
𝑁

∏
𝑘=1

d3𝑟𝑘 , (2.89a)

= ∫
𝑁

∏
𝑘=1

d3𝑟𝑘 + ∑
𝑖<𝑗

∫ 𝑓𝑖𝑗

𝑁
∏
𝑘=1

d3𝑟𝑘 , (2.89b)

= 𝑉 𝑁 + ∑
𝑖<𝑗

∫ 𝑓𝑖𝑗 d3𝑟𝑖 d3𝑟𝑗 ∏
𝑘≠𝑖,𝑗

d3𝑟𝑘 , (2.89c)
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= 𝑉 𝑁 + 𝑉 𝑁−2 ∑
𝑖<𝑗

∫ 𝑓𝑖𝑗 d3𝑟𝑖 d3𝑟𝑗 , (2.89d)

= 𝑉 𝑁 + 𝑉 𝑁−2𝑁(𝑁 − 1)
2

∫ 𝑓12 d3𝑟1 d3𝑟2 , (2.89e)

where we used the fact that, since we’re integrating over r𝑖 and r𝑗, all terms in the sum
are equal. If we now introduce coordinates r = r1 − r2 and5 R = r1 + r2, the integral
becomes

𝑄𝑁 = 𝑉 𝑁 + 𝑉 𝑁−2𝑁(𝑁 − 1)
2

∫ 𝑓(𝑟) d3𝑅 d3𝑟 , (2.90a)

= 𝑉 𝑁 + 𝑉 𝑁−1𝑁(𝑁 − 1)
2

∫ 𝑓(𝑟) d3𝑟 , (2.90b)

= 𝑉 𝑁 + 2𝜋𝑉 𝑁−1𝑁(𝑁 − 1) ∫ 𝑓(𝑟)𝑟2 d𝑟 , (2.90c)

where in the last step we chose to work in spherical coordinates and used the assumption
that the interaction depends only on the distance between the molecules, and hence it is
isotropic.

To compute thermodynamics quantities we’ll ultimately be interested in log 𝑍. Hence,
we notice now that Eq. (2.90) leads us to

log 𝑄𝑁 = 𝑁 log 𝑉 + log [1 + 2𝜋𝑁(𝑁 − 1)
𝑉

∫ 𝑓(𝑟)𝑟2 d𝑟]. (2.91)

Now comes our second approximation: we’ll assume 𝑁
𝑉 ≪ 1, i.e., that the gas is in a

low density regime6. Under this hypothesis, we can write

log 𝑄𝑁 ≈ 𝑁 log 𝑉 + 2𝜋𝑁(𝑁 − 1)
𝑉

∫ 𝑓(𝑟)𝑟2 d𝑟 . (2.92)

Using Eqs. (2.83) and (2.92) on page 34 and on the current page we get to

1
𝑁

log 𝑍 = − 1
𝑁

log 𝑁! + 3
2

log 2𝜋𝑚
𝛽ℎ2 + 1

𝑁
log 𝑄𝑁, (2.93a)

≈ − log 𝑁 + 1 + 3
2

log 2𝜋𝑚
𝛽ℎ2 + log 𝑉 + 2𝜋(𝑁 − 1)

𝑉
∫ 𝑓(𝑟)𝑟2 d𝑟 , (2.93b)

≈ − log 𝑁 + 1 + 3
2

log 2𝜋𝑚
𝛽ℎ2 + log 𝑉 + 2𝜋𝑁

𝑉
∫ 𝑓(𝑟)𝑟2 d𝑟 , (2.93c)

= log 𝑉
𝑁

+ 3
2

log 2𝜋𝑚
𝛽ℎ2 + 2𝜋𝑁

𝑉
∫ 𝑓(𝑟)𝑟2 d𝑟 + 1, (2.93d)

= log 𝑣 + 3
2

log 2𝜋𝑚
𝛽ℎ2 + 2𝜋

𝑣
∫ 𝑓(𝑟)𝑟2 d𝑟 + 1. (2.93e)

5One could choose R to be the position of the center of mass. I’m using R = r1 + r2 to avoid having
to think about the Jacobians that go into the integral, but either choice should work out equally well.

6 𝑁
𝑉 ≪ 1 is not dimensionally correct, but it should be understood in comparison with the terms that

go along with it on Eq. (2.91).
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With Eq. (2.93) on the preceding page we can now compute thermodynamic quantities.
The Helmholtz free energy per molecule, for example, is given by

𝑓(𝑇 , 𝑣) = − 1
𝛽𝑁

log 𝑍, (2.94a)

= − 1
𝛽

[log 𝑣 + 3
2

log 2𝜋𝑚
𝛽ℎ2 + 2𝜋

𝑣
∫ 𝑓(𝑟)𝑟2 d𝑟 + 1]. (2.94b)

Therefore, the pressure is given by

𝑝(𝑇 , 𝑣) = −(𝜕𝑓
𝜕𝑣

)
𝑇
, (2.95a)

= 𝑘𝐵𝑇
𝑣

− 2𝜋𝑘𝐵𝑇
𝑣2 ∫ 𝑓(𝑟)𝑟2 d𝑟 . (2.95b)

By comparing Eqs. (2.80) and (2.95) on page 33 and on this page, we see we’ve found
the first virial term to be

𝐴(𝑇 ) = −2𝜋 ∫
+∞

0
𝑓(𝑟)𝑟2 d𝑟 . (2.96)

Let us now consider the specific case of the Van der Waals gas. We go back to the
hard sphere potential of Fig. 2.4b on page 35 and notice that it leads us to

𝐴(𝑇 ) = −2𝜋[∫
𝑟0

0
𝑓(𝑟)𝑟2 d𝑟 + ∫

2𝑟0

𝑟0

𝑓(𝑟)𝑟2 d𝑟 + ∫
+∞

2𝑟0

𝑓(𝑟)𝑟2 d𝑟], (2.97a)

= −2𝜋[− ∫
𝑟0

0
𝑟2 d𝑟 + ∫

2𝑟0

𝑟0

(𝑒𝛽𝑉0 − 1)𝑟2 d𝑟 + 0], (2.97b)

= −2𝜋[−𝑟3
0
3

+ 7𝑟3
0

3
(𝑒𝛽𝑉0 − 1)], (2.97c)

= 2𝜋𝑟3
0

3
− 14𝜋𝑟3

0
3

(𝑒𝛽𝑉0 − 1). (2.97d)

For a weakly attractive potential, in which 𝑉0 can be assumed to be very small, we can
then write

𝐴(𝑇 ) = 2𝜋𝑟3
0

3
− 14𝜋𝑟3

0𝑉0
3𝑘𝐵𝑇

. (2.98)

If we now recall the equation of state for the Van der Waals gas, Eq. (2.81) on page 34,
we can see that

𝑝
𝑘𝐵𝑇

= 1
𝑣 − 𝑏

− 𝑎
𝑘𝐵𝑇 𝑣2 , (2.99a)

= 1
𝑣(1 − 𝑏

𝑣)
− 𝑎

𝑘𝐵𝑇 𝑣2 , (2.99b)
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= 1
𝑣

+ 𝑏
𝑣2 + 𝑏2

𝑣3 + ⋯ − 𝑎
𝑘𝐵𝑇 𝑣2 , (2.99c)

= 1
𝑣

+ (𝑏 − 𝑎
𝑘𝐵𝑇

) 1
𝑣2 + 𝑏2

𝑣3 + ⋯ . (2.99d)

Comparing Eqs. (2.98) and (2.99) on the previous page lets us identify

𝑎 = 14𝜋𝑟3
0𝑉0

3
and 𝑏 = 2𝜋𝑟3

0
3

, (2.100)

which justifies interpreting the Van der Waals gas as a gas of weakly attractive hard
spheres. For further discussion on the Van der Waals equation see, e.g., the text by Kardar
(2007b, Sec. 5.3).

As last, it is worth mentioning that for high temperatures the Van der Waals gas
behaves just like an ideal gas, as depicted on Fig. 2.6 on the following page. However, for
small temperatures, the isotherms do not match experiment and there’s even the presence
of thermodynamic instabilities ((𝜕𝑝

𝜕𝑣)
𝑇

> 0). On Section 3 we’ll take a close a look at these
issues and notice there is a phase transition happening with the same critical exponents
of the Curie–Weiss model for a ferromagnet.

2.5 Grand Canonical Ensemble

The canonical ensemble is frequently useful, but the canonical partition function doesn’t
factorize for quantum gases due to particle indistinguishability. For these cases, it will be
useful to use the grand canonical ensemble.

Let us begin by discussing when to use the different ensembles. While we overlooked
the microcanonical ensemble at jumped straight at the canonical ensemble, a traditional
way of deriving the canonical partition function is by considering the physical situation
corresponding to each ensemble.

The so-called microcanonical ensemble (discussed, e.g., by Kardar 2007b, Sec. 4.2;
Pathria and Beale 2022, Sec. 2.3; Salinas 2001, Chap. 4) corresponds to an isolated system,
which means we hold the internal energy 𝑈, the volume 𝑉, and the number of particles 𝑁
fixed. In this situation, the fundamental principle of Statistical Mechanics states that all
microstates are equally likely and, as a consequence, the problem boils down to counting
the number of accessible microstates. Denoting said number of microstates by Ω(𝑈, 𝑉 , 𝑁),
the entropy is obtained through Boltzmann’s formula 𝑆(𝑈, 𝑉 , 𝑁) = 𝑘𝐵 log Ω(𝑈, 𝑉 , 𝑁),
from which we can obtain all other thermodynamic properties.

The canonical ensemble corresponds to a different physical situation. When using it,
we assume to be describing a subsystem 𝑆 of an isolated system. 𝑆 itself is not isolated,
but rather is subject to a thermal bath 𝑅 at temperature 𝑇. Under these conditions,
one can show (see, e.g., Salinas 2001, Chap. 5), that the probability distribution for the
microstates of the subsystem will be given by the Gibbs distribution,

𝑝𝑗 = 𝑒−𝛽𝐸𝑗

𝑍
. (2.101)
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𝑏 𝑣𝑐
𝑣

0

𝑝𝑐

𝑝

Figure 2.6: 𝑝𝑣 diagram for the Van der Waals gas. Each line is an isotherm. Notice that for
high temperatures, we recover the behavior of an ideal gas, while small temperatures
(namely, those below the dashed line) present new, problematic behaviors that hint at
what we’ll later learn to be a phase transition. The dashed line correspond to the
so-called critical temperature, and the highlighted point is the so-called critical point.
This graph was based on the code by christian (2016).

Notice, in particular, that 𝑍 is a function of temperature, volume, and number of particles.
Hence, the system and bath exchange energy in order to keep the temperature fixed, but
the volume and number of particles of the subsystem remain fixed.

The canonical ensemble is one of the most used ones. Computing the number of
microstates in the microcanonical ensemble is often a cumbersome task, while computing
the canonical partition function is typically fair easier.

In spite of that, there are physical situations in which the canonical ensemble is not
convenient. In some of these, the grand canonical ensemble might be a better choice. It
corresponds to the situation in which the subsystem 𝑆 is subject not only to a thermal
bath, but also to a particle bath. Hence, volume is held fixed, but energy and number of
particles are not. Instead, temperature and chemical potential are kept constant while
energy and number of particles fluctuate.

In this last physical situation, using the facts known from the microcanonical ensemble
and the hypothesis that the energy and number of particles of the subsystem are much
less than those of the composite system involving the bath, one can show (Salinas 2001,
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Sec. 7.2) that the probability distribution for the microstates of the subsystem will be

𝑝𝑗 = 𝑒−𝛽𝐸𝑗+𝛽𝜇𝑁𝑗

∑𝑖 𝑒−𝛽𝐸𝑖+𝛽𝜇𝑁𝑖
, (2.102)

where 𝛽 is the (fixed) inverse temperature, 𝜇 is the (fixed) chemical potential, and the
sum is carried over states of fixed temperature and chemical potential. We define

Ξ(𝑇 , 𝑉 , 𝜇) = ∑
𝑖

𝑒−𝛽𝐸𝑖+𝛽𝜇𝑁𝑖 (2.103)

to be the grand canonical partition function.

𝑡

⟨𝐸⟩

𝐸

(a)

𝑡

⟨𝑁⟩
𝑁

(b)

Figure 2.7: In the grand canonical ensemble, the energy and number of particles on the subsystem
under consideration fluctuate about an average. In the thermodynamic limit, these
fluctuations become negligible.

The fact that we are dealing with systems in equilibrium means, in this context, that
while the energy and number of particles of the subsystem do fluctuate with time, they
fluctuate about average values, as illustrated on Fig. 2.7. In the thermodynamic limit,
these fluctuations will die off and become negligible, just like we had in the canonical
ensemble.

One then might inquire about how we’ll compute the grand canonical partition function.
There are two main approaches:

i. our first option is to list all states, their respective energies 𝐸𝑖 and particle numbers
𝑁𝑖, and then perform the sum on Eq. (2.103);

ii. an alternative, but equivalent, approach is to regroup the sum in terms of fixed
values of 𝑁, writing

Ξ(𝑇 , 𝑉 , 𝜇) =
+∞

∑
𝑁=0

𝑒𝛽𝜇𝑁 ∑
𝑖

𝑒−𝛽𝐸𝑖(𝑁), (2.104a)

=
+∞

∑
𝑁=0

𝑒𝛽𝜇𝑁𝑍(𝑇 , 𝑉 , 𝑁), (2.104b)

where 𝐸𝑖(𝑁) denotes the energy of state 𝑖 at fixed 𝑁.
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Notice that the second method allows us to understand the grand canonical partition
function in terms of the more familiar canonical partition function.

We are able to relate partition functions to thermodynamic potentials. For example,
for the canonical partition function we have

𝑍(𝑇 , 𝑉 , 𝑁) = 𝑒−𝛽𝐹(𝑇 ,𝑉 ,𝑁), (2.105)

where 𝐹(𝑇 , 𝑉 , 𝑁) is the Helmholtz free energy. To find out the expression for the grand
canonical partition function, we begin by noticing that

Ξ(𝑇 , 𝑉 , 𝜇) =
+∞

∑
𝑁=0

𝑒𝛽𝜇𝑁−𝛽𝐹(𝑇 ,𝑉 ,𝑁), (2.106a)

=
+∞

∑
𝑁=0

𝑒−𝛽[𝐹(𝑇 ,𝑉 ,𝑁)−𝜇𝑁]. (2.106b)

To make the connection with thermodynamics, we may then approximate this sum by
its maximum term, which is the one that dominates in the thermodynamic limit. In this
situation, we’ll get to

Ξ(𝑇 , 𝑉 , 𝜇) ≈ 𝑒−𝛽 min𝑁 {𝐹(𝑇 ,𝑉 ,𝑁)−𝜇𝑁}, (2.107a)
= 𝑒−𝛽Φ(𝑇 ,𝑉 ,𝜇), (2.107b)

where we used the fact that min𝑁 {𝐹(𝑇 , 𝑉 , 𝑁) − 𝜇𝑁} is just a Legendre transformation
from the Helmholtz free energy to the grand potential7 Φ. Therefore, we can write

Φ(𝑇 , 𝑉 , 𝜇) = −𝑘𝐵𝑇 log Ξ(𝑇 , 𝑉 , 𝜇). (2.108)

Our next step is then to compute the ensemble averages, with particular interest on
the expressions for the mean energy and mean number of particles. For the mean number
of particles we have

⟨𝑁⟩ = ∑
𝑖

𝑁𝑖𝑝𝑖, (2.109a)

= 1
Ξ

∑
𝑖

𝑁𝑖𝑒−𝛽𝐸𝑖+𝛽𝜇𝐸𝑖 , (2.109b)

= 1
𝛽Ξ

𝜕
𝜕𝜇

∑
𝑖

𝑒−𝛽𝐸𝑖+𝛽𝜇𝐸𝑖 , (2.109c)

= 1
𝛽Ξ

𝜕Ξ
𝜕𝜇

, (2.109d)

= 1
𝛽

𝜕
𝜕𝜇

log Ξ. (2.109e)

7Kardar (2007b, Sec. 119) and Reichl (2016, Sec. 3.5.5) call it grand potential. Salinas (2001, p. 52)
calls it “grand thermodynamic potentiall”. Pathria and Beale (2022, Sec. 4.3) prefers “𝑞-potential”. Prof.
Fiore referred to it as “grand canonical potential”.
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Notice next that

− 1
Ξ

𝜕Ξ
𝜕𝛽

= − 1
Ξ

𝜕
𝜕𝛽

∑
𝑖

𝑒−𝛽𝐸𝑖+𝛽𝜇𝐸𝑖 , (2.110a)

= − 1
Ξ

∑
𝑖

(𝐸𝑖 − 𝜇𝑁𝑖)𝑒−𝛽𝐸𝑖+𝛽𝜇𝐸𝑖 , (2.110b)

= − ∑
𝑖

(𝐸𝑖 − 𝜇𝑁𝑖)𝑝𝑖, (2.110c)

= − ⟨𝐸⟩ + 𝜇 ⟨𝑁⟩ . (2.110d)

Eqs. (2.109) and (2.110) on the previous page and on this page imply that

⟨𝐸⟩ = − 1
Ξ

𝜕Ξ
𝜕𝛽

− 𝜇 ⟨𝑁⟩ , (2.111a)

= − 𝜕
𝜕𝛽

log Ξ − 𝜇
𝛽

𝜕
𝜕𝜇

log Ξ. (2.111b)

To simplify this expression for ⟨𝐸⟩, we can introduce the fugacity8,

𝑧 = 𝑒𝛽𝜇, (2.112)

in terms of which we may write

𝑝𝑖 = 𝑧𝑁𝑖𝑒−𝛽𝐸𝑖

Ξ
(2.113)

and

Ξ(𝑇 , 𝑉 , 𝑧) =
+∞

∑
𝑁=0

𝑧𝑁𝑍(𝑇 , 𝑉 , 𝑁). (2.114)

In terms of the fugacity, the mean energy can be written as

⟨𝐸⟩ = 1
Ξ

∑
𝑖

𝐸𝑖𝑧𝑁𝑖𝑒−𝛽𝐸𝑖 , (2.115a)

= − 1
Ξ

( 𝜕
𝜕𝛽

∑
𝑖

𝑧𝑁𝑖𝑒−𝛽𝐸𝑖)
𝑧

, (2.115b)

= −( 𝜕
𝜕𝛽

log Ξ)
𝑧
. (2.115c)

Eqs. (2.111) and (2.115) are consistent with each other because different variables are
kept constant in each of them.

8Salinas (2001, p. 130) mentions the fugacity is sometimes called the “activity”.
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As for the number of particles, we have

⟨𝑁⟩ = 1
Ξ

∑
𝑖

𝑁𝑖𝑧𝑁𝑖𝑒−𝛽𝐸𝑖 , (2.116a)

= 𝑧
Ξ

(𝜕Ξ
𝜕𝑧

)
𝛽
, (2.116b)

= 𝑧( 𝜕
𝜕𝑧

log Ξ)
𝛽
. (2.116c)

Using reduction of derivatives (see Callen 1985, Sec. 7.3) one can show that, for some
quantity 𝑞,

( 𝜕𝑞
𝜕𝛽

)
𝑧

= ( 𝜕𝑞
𝜕𝛽

)
𝜇

+ ( 𝜕𝑞
𝜕𝜇

)
𝛽
(𝜕𝜇

𝜕𝛽
)

𝑧
, (2.117a)

= ( 𝜕𝑞
𝜕𝛽

)
𝜇

− 𝜇
𝛽

( 𝜕𝑞
𝜕𝜇

)
𝛽
, (2.117b)

where we computed (𝜕𝜇
𝜕𝛽 )

𝑧
= −𝜇

𝛽 from 𝑧 = 𝑒𝛽𝜇. Notice Eq. (2.117) is precisely the relation
necessary for consistency between Eqs. (2.111) and (2.115) on the previous page, as one
can see from plugging in 𝑞 = − log Ξ into Eq. (2.117).

It remains for us to study the quantity

⟨(𝑁 − ⟨𝑁⟩)2⟩ = ⟨𝑁2⟩ − ⟨𝑁⟩2 , (2.118)

which will be relevant to the grand canonical ensemble for a couple of reasons.

i. ⟨(𝑁 − ⟨𝑁⟩)2⟩ is related to 𝜕⟨𝑁⟩
𝜕𝜇 , and hence the positivity of one will imply the

positivity of the other, ensuring that the number of particles increases with the
chemical potential.

ii. This will allow us to notice that the fluctuations of the number of particles about
the expected value become negligible in the thermodynamic limit, with the expected
value matching the fixed value of 𝑁 one would get from the canonical ensemble,
hence showing the ensembles are equivalent.

Through the usual arguments, one can show that

⟨𝑁2⟩ = 1
Ξ

1
𝛽2

𝜕2Ξ
𝜕𝜇2 . (2.119)

A calculation analogous to the one we did in Eq. (2.5) on page 16 also lets us see that

⟨𝑁2⟩ − ⟨𝑁⟩2 = 1
𝛽2

𝜕2

𝜕𝜇2 log Ξ, (2.120a)

= 1
𝛽

𝜕 ⟨𝑁⟩
𝜕𝜇

. (2.120b)
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Since ⟨𝑁2⟩ − ⟨𝑁⟩2 ≥ 0 and 𝛽 > 0, we conclude 𝜕⟨𝑁⟩
𝜕𝜇 ≥ 0.

In some situations, when dealing with phase transitions, one might get 𝜕⟨𝑁⟩
𝜕𝜇 < 0.

This is an incorrect result and must be fixed, but it might also be used as a hint of the
occurrence of a phase transition.

To deal with the fluctuations, we notice that the thermodynamic number of particles
𝑁 is the expected value ⟨𝑁⟩. One can then show that (Salinas 2001, Sec. 7.2B)

√⟨𝑁2⟩ − ⟨𝑁⟩2

⟨𝑁⟩
= 1

𝑁
√𝑁2𝜅𝑇

𝛽𝑉
, (2.121a)

= (𝑘𝐵𝑇 𝜅𝑇
𝑣

)
1
2 1√

𝑁
, (2.121b)

→ 0, (2.121c)

where in the last line we took the thermodynamic limit and 𝜅𝑇 is the isothermal com-
pressibility. Hence, we see that in the thermodynamic limit the fluctuations will vanish.
This is in fact what allows us to understand the ensemble average ⟨𝑁⟩ as the actual
thermodynamic number of particles 𝑁, leading us also to an equivalence of the canonical
and grand canonical ensembles.

We typically expect ensembles to be equivalent in the thermodynamic limit for
homogeneous systems with short-range interactions. Near phase transitions, this might fail,
as we can have 𝜅𝑇 → +∞, which renders the previous argument inconsistent (Eq. (2.121c)
only holds if the coefficient on Eq. (2.121b) remains finite in the thermodynamic limit).

For long-range interactions, there is no consensus in the literature on whether there is
equivalence of ensembles. Maybe add di-

verging refer-
ences?Monoatomic Ideal Gas

As an example of how the grand canonical potential works, let us consider the monoatomic
ideal gas one more time.

From Eq. (2.44) on page 26 we know the canonical partition function for the ideal gas
is given by

𝑍(𝑇 , 𝑉 , 𝑁) = 𝑉 𝑁

𝑁!
[2𝜋𝑚

𝛽ℎ2 ]
3𝑁
2

. (2.122)

Therefore, the grand canonical partition function will be

Ξ(𝑇 , 𝑉 , 𝜇) =
+∞

∑
𝑁=0

𝑧𝑁𝑍(𝑇 , 𝑉 , 𝑁), (2.123a)

=
+∞

∑
𝑁=0

1
𝑁!

[2𝜋𝑚
𝛽ℎ2 ]

3𝑁
2

𝑧𝑁𝑉 𝑁, (2.123b)

= exp([2𝜋𝑚
𝛽ℎ2 ]

3
2
𝑧𝑉). (2.123c)
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Hence, the internal energy as a function of fugacity (not number of particles) is given
by

𝑈(𝑇 , 𝑉 , 𝑧) = ⟨𝐸⟩ , (2.124a)

= − 𝜕
𝜕𝛽

log Ξ(𝑇 , 𝑉 , 𝑧), (2.124b)

= 3
2

[2𝜋𝑚
𝛽ℎ2 ]

3
2 𝑧𝑉

𝛽
. (2.124c)

As for the expected number of particles, we get

𝑁(𝑇 , 𝑉 , 𝑧) = ⟨𝑁⟩ , (2.125a)

= 𝑧 𝜕
𝜕𝑧

log Ξ(𝑇 , 𝑉 , 𝑧), (2.125b)

= [2𝜋𝑚
𝛽ℎ2 ]

3
2
𝑧𝑉 . (2.125c)

Notice that Eqs. (2.124) and (2.125) imply

⟨𝐸⟩
⟨𝑁⟩

= 3
2

𝑘𝐵𝑇 , (2.126)

in agreement with the canonical ensemble.

2.6 Quantum Gases

So far, we have dealt with quantum systems in the sense we were able to compute the
thermodynamic properties of some systems with discrete energy levels and which obeyed
the Third Law of Thermodynamics. Nevertheless, we still haven’t tackled one of the most
important features of quantum systems: undistinguishability. So far, we were able to
avoid it by assuming we were looking at localized particles, but this can’t be done for a
gas.

1

2 3

2

3 1

3

1 2
≠ ≠

Figure 2.8: When dealing with distinguishable particles, we have to account for permutations of
particles counting as different states. In the figure, each picture represents a different
particle of a set of three particles being on an excited state. If the particles were
undistinguishable, the three states would be a single one.

For distinguishable particles, different permutations of particles can lead to different
states, as illustrated on Fig. 2.8. A gas with discrete states and such properties (such as the
Boltzmann gas discussed by Salinas 2001, pp. 77–79) is said to obey Maxwell–Boltzmann
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statistics. For quantum gases, particles will be undistinguishable, and they will obey other
statistics.

The canonical partition function for the Boltzmann gas, which is simply a gas made
of distinguishable particles with �̃� discrete energy levels, is

𝑍(𝑇 , 𝑉 , 𝑁) = (𝑒−𝛽𝜖1 +−𝛽𝜖2𝑒 + ⋯ + 𝑒−𝛽𝜖�̃�)
𝑁

, (2.127a)

= ∑
𝑛1,…,𝑛�̃�

𝑛1+⋯+𝑛�̃�=𝑁

𝑁!
𝑛1! ⋯ 𝑛�̃�!

𝑒−𝛽(𝜖1𝑛1+⋯+𝜖�̃�𝑛�̃�), (2.127b)

where both lines are related by the multinomial theorem. The combinatorial factors are
introduced to account for the fact that permutations of particles lead to different states.
When this is no longer true, we won’t be able to use the multinomial theorem to compute
the sum, and hence the canonical partition function will no longer be a convenient way of
performing the calculations. Nevertheless, we will be able to obtain closed expressions by
working with the grand canonical ensemble.

Identical Particles

In order to discuss quantum gases, we’ll need to review some concepts about identical
particles in Quantum Mechanics. While this review will be brief, more information can be
found in the literature, such as in the Quantum Mechanics books by Griffiths (2005, Chap.
5), Sakurai and Napolitano (2017, Chap. 7), Shankar (1994, Sec. 10.3), and Weinberg
(2015, Sec. 4.5, 2021, Sec. 5.5), or the Statistical Mechanics books by Kardar (2007b, Sec.
7.1), Pathria and Beale (2022, Sec. 5.4), and Salinas (2001, Chap. 8).

In classical mechanics, permuting two particles leads to a different state. However,
this is often not the case in Quantum Mechanics. Let us define a permutation operator ̂𝑃
by

̂𝑃𝜓(1, 2) = 𝜓(2, 1), (2.128)

i.e., it “switches” the states of two particles. For identical particles, this doesn’t change
the physical state.

Permuting twice should bring us back to our original wavefunction, ̂𝑃 2𝜓 = 𝜓. Hence,
we identify two cases

• ̂𝑃𝜓 = +𝜓, corresponding to bosons, which are particles of integer spin;

• ̂𝑃𝜓 = −𝜓, corresponding to fermions, which are particles of half-integer.

This connection between spin and parity (or, more appropriately, spin and statistics) can
be understood under the light of Quantum Field Theory (Streater and Wightman 2000,
Sec. 4.4).

It is interesting to notice that imposing statistics—i.e., imposing that wavefunctions
should always be an eigenstate of the permutation operator with eigenvalue ±1—leads to
correlations between the particles even in the absence of interactions. For example, two
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fermions with the same spin can’t be on the same position simultaneously, leading to a
“repulsion effect”.

The totally antisymmetric wavefunction of fermions is given, in the absence of spin9,
by the Slater determinant,

Ψ𝐴(r1, … , r𝑛) = 1√
𝑛!

det ⎛⎜
⎝

𝜓1(r1) ⋯ 𝜓1(r𝑛)
⋮ ⋱ ⋮

𝜓𝑛(r1) ⋯ 𝜓𝑛(r𝑛)
⎞⎟
⎠

. (2.129)

Notice that it implies that Ψ𝐴 = 0 if any two fermions have the same state. In the
particular case of 𝑛 = 2 we find

Ψ𝐴(r1, r2) = 1√
2

(𝜓1(r1)𝜓2(r2) − 𝜓1(r2)𝜓2(r1)). (2.130)

Notice that ̂𝑃Ψ𝐴 = −Ψ𝐴.
For bosons, the totally symmetric wavefunction can be written in terms of a permanent,

which is similar to a determinant, but with only positive signs. Hence,

Ψ𝑆(r1, … , r𝑛) = 1√
𝑛!

perm ⎛⎜
⎝

𝜓1(r1) ⋯ 𝜓1(r𝑛)
⋮ ⋱ ⋮

𝜓𝑛(r1) ⋯ 𝜓𝑛(r𝑛)
⎞⎟
⎠

. (2.131)

This leads to ̂𝑃Ψ𝑆 = +Ψ𝑆 and to two bosons being able to be on the same state.
It should be noticed that these symmetry properties are not mere theoretical simplifica-

tions, but rather experimental facts about nature with physical consequences. Chemistry
is built upon Pauli’s exclusion principle, which states two fermions (such as electrons) can’t
be on the same quantum state simultaneously. Bosons are capable of forming condensate
states in which all particles are at the ground state, but fermions are not. Fermions can
have positive chemical potential, while bosons can’t. And so on.

Statistical Mechanics of Free Bosons and Fermions

Let us denote by 𝑛𝑗 the number of particles on an energy level 𝜖𝑗. It is common to borrow
from Chemistry the name “orbital” for each energy level in this context of Quantum
Statistical Mechanics, hence so shall we do. The total energy would then be

𝐸 = ∑
𝑗

𝑛𝑗𝜖𝑗. (2.132)

For bosons, 𝑛𝑗 can take any non-negative integer values. For fermions, 𝑛𝑗 can take only
the values 0 and 1, since two or more fermions can’t occupy the same orbital.

9Fermions are always particles of half-integer spin, so they can’t really be spinless, but we can treat this
as an approximation to the more complicated problem that considers the spin as well. For our purposes,
spin will only be relevant by means of degeneracy effects or interactions with an external magnetic field,
so we can ignore it for now.
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Since spin would only contribute to the problem through interaction with an external
magnetic field or by adjusting some factors due to degeneracy, we’ll ignore it for now.

In the canonical ensemble, we have

𝑍(𝑇 , 𝑉 , 𝑁) = ∑
𝑛1,…,𝑛�̃�

𝑛1+⋯+𝑛�̃�=𝑁

𝑒−𝛽(𝜖1𝑛1+⋯+𝜖�̃�𝑛�̃�). (2.133)

There is nothing wrong with this expression, but we are not able to express the sum in a
closed form. Hence, this approach it not particularly convenient.

On the other hand, we can write the grand canonical partition function as

Ξ(𝑇 , 𝑉 , 𝜇) =
+∞

∑
𝑁=0

𝑒𝛽𝜇𝑁 ∑
𝑛1,…,𝑛�̃�

𝑛1+⋯+𝑛�̃�=𝑁

𝑒−𝛽(𝜖1𝑛1+⋯+𝜖�̃�𝑛�̃�). (2.134)

The trick is to now notice that summing over 𝑛1, …, 𝑛�̃� with the restriction of 𝑛1+⋯+𝑛�̃� =
𝑁 and later summing over 𝑁 is identical to just summing over 𝑛1, …, 𝑛�̃� with no restrictions
at all (cf. the illustration on Fig. 2.9 on the next page). Hence,

Ξ(𝑇 , 𝑉 , 𝜇) =
+∞

∑
𝑁=0

𝑒𝛽𝜇𝑁 ∑
𝑛1,…,𝑛�̃�

𝑛1+⋯+𝑛�̃�=𝑁

𝑒−𝛽(𝜖1𝑛1+⋯+𝜖�̃�𝑛�̃�), (2.135a)

=
+∞

∑
𝑁=0

∑
𝑛1,…,𝑛�̃�

𝑛1+⋯+𝑛�̃�=𝑁

𝑒𝛽𝜇𝑁𝑒−𝛽(𝜖1𝑛1+⋯+𝜖�̃�𝑛�̃�), (2.135b)

=
+∞

∑
𝑁=0

∑
𝑛1,…,𝑛�̃�

𝑛1+⋯+𝑛�̃�=𝑁

𝑒𝛽𝜇(𝑛1+⋯+𝑛�̃�)𝑒−𝛽(𝜖1𝑛1+⋯+𝜖�̃�𝑛�̃�), (2.135c)

= ∑
𝑛1,…,𝑛�̃�

𝑒𝛽𝜇(𝑛1+⋯+𝑛�̃�)𝑒−𝛽(𝜖1𝑛1+⋯+𝜖�̃�𝑛�̃�), (2.135d)

= (∑
𝑛1

𝑒−𝛽(𝜖1−𝜇)𝑛1) ⋯ (∑
𝑛�̃�

𝑒−𝛽(𝜖𝑛�̃�
−𝜇)𝑛𝑛�̃� ), (2.135e)

= ∏
𝑗

(∑
𝑛

𝑒−𝛽(𝜖𝑗−𝜇)𝑛). (2.135f)

Notice that the absence of interactions allowed us to decompose the grand canonical
partition function in a product of orbitals (not of particles).

In possession of Eq. (2.135), we now need to treat bosons and fermions differently. For
bosons, we get

ΞBE(𝑇 , 𝑉 , 𝜇) = ∏
𝑗

(1 + 𝑒−𝛽(𝜖𝑗−𝜇) + 𝑒−2𝛽(𝜖𝑗−𝜇) + ⋯), (2.136a)

= ∏
𝑗

1
1 − 𝑒−𝛽(𝜖𝑗−𝜇) , (2.136b)
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Figure 2.9: To sum the points on each individual line (which are defined by 𝑥 + 𝑦 = constant)
and then sum over the lines is the same thing as just summing over all dots. A
similar idea applies to Eq. (2.135) on the previous page.

where “BE” stands for Bose–Einstein statistics, the name given for this case.
For fermions, we get Fermi–Dirac statistics, which has

ΞFD(𝑇 , 𝑉 , 𝜇) = ∏
𝑗

(1 + 𝑒−𝛽(𝜖𝑗−𝜇)). (2.137)

Hence, we can write both cases in a single line by writing

log ΞBE/FD = ∓ ∑
𝑗

log(1 ∓ 𝑒−𝛽(𝜖𝑗−𝜇)), (2.138)

where the upper sign stands for Bose–Einstein statistics and the lower sign for Fermi–Dirac
statistics.

From Eq. (2.138) we can obtain the grand potential,

ΦBE/FD(𝑇 , 𝑉 , 𝜇) = ±𝑘𝐵𝑇 log(1 ± 𝑒−𝛽(𝜖𝑗−𝜇)), (2.139)

which now allows us to compute the mean number of particles, 𝑁 = ∑𝑗 ⟨𝑛𝑗⟩ = −(𝜕Φ
𝜕𝜇 )

𝑇 ,𝑉
.

We find

𝑁BE/FD = ∓𝑘𝐵𝑇 ∑
𝑗

(∓𝛽)𝑒−𝛽(𝜖𝑗−𝜇)

1 ± 𝑒−𝛽(𝜖𝑗−𝜇) , (2.140a)

= ∑
𝑗

𝑒−𝛽(𝜖𝑗−𝜇)

1 ± 𝑒−𝛽(𝜖𝑗−𝜇) , (2.140b)

= ∑
𝑗

1
𝑒𝛽(𝜖𝑗−𝜇) ± 1

. (2.140c)

Hence, we can also write
⟨𝑛𝑗⟩BE/FD

= 1
𝑒𝛽(𝜖𝑗−𝜇) ± 1

. (2.141)

Firstly, we notice that, as expected, Eq. (2.141) on the preceding page predicts
0 ≤ ⟨𝑛𝑗⟩FD

≤ 1. For bosons, we notice that we must have ⟨𝑛𝑗⟩BE
≥ 0, which implies
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𝑒𝛽𝜖𝑗 ≥ 𝑒𝛽𝜇. Hence, 𝜖𝑗 ≥ 𝜇 for all 𝑗, in particular for the ground state. This shows that
the chemical potential of a gas of bosons is bounded from above by 𝜖0. If 𝜖0 = 0 (as we
can achieve by redefining the energy with a constant), the chemical potential can never
be positive.

Classical Limit

We should point out that the difference between bosons and fermions ends up lying on
the sign of Eq. (2.141) on the previous page. Nevertheless, in the classical limit the
exponential dominates over the constant 1, and hence we obtain

⟨𝑛𝑗⟩ ≈ 𝑒−𝛽(𝜖𝑗−𝜇). (2.142)

Notice that the classical limit 𝑒𝛽(𝜖𝑗−𝜇) ≫ 1 can also be written as 𝑒𝛽𝜖𝑗 ≫ 𝑒𝛽𝜇. Since
this last expression should hold for any 𝑗, this implies 1 ≫ 𝑒𝛽𝜇.

For the grand canonical partition function, the classical limit yields (cf. Eq. (2.138)
on the preceding page)

log Ξ ≈ ∑
𝑗

𝑒−𝛽(𝜖𝑗−𝜇). (2.143)

To proceed, let us choose the particular case of an ideal gas. The spectrum of such a
gas is given by

𝜖k = ℏ2‖k‖2

2𝑚
, (2.144)

where the wave vector k is given by

k = 2𝜋
𝐿

n, (2.145)

with n ∈ ℤ3. This quantization condition is enforced by imposing boundary conditions on
the problem (we can choose for the wavefunctions to vanish on the walls of a cubic box,
or choose periodic boundary conditions). In the thermodynamic limit, the dimensions 𝐿
of the box will go to infinity, and hence these boundary conditions won’t lead to loss of
generality.

In fact, in the thermodynamic limit, we can approximate the discrete sum defining
the grand canonical partition function by an integral, and hence write

log Ξ ≈ ∑
k

𝑒−𝛽(𝜖k−𝜇), (2.146a)

≈ 𝑉
(2𝜋)3 ∫ 𝑒−𝛽(𝜖k−𝜇) d3𝑘 , (2.146b)

= 𝑉
(2𝜋)3 ∫ 𝑒−𝛽( ℏ2‖k‖2

2𝑚 −𝜇) d3𝑘 , (2.146c)

= 4𝜋𝑉
(2𝜋)3 𝑒𝛽𝜇 ∫ 𝑒−𝛽 ℏ2𝑘2

2𝑚 𝑘2 d𝑘 , (2.146d)

= 𝑉
(2𝜋)3 𝑒𝛽𝜇(2𝜋𝑚

𝛽ℏ2 )
3
2
. (2.146e)
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Hence, we find the grand potential

Φ(𝑇 , 𝑉 , 𝜇) = −(𝑘𝐵𝑇 ) 5
2 𝑉(2𝜋𝑚

ℏ2 )
3
2
𝑒

𝜇
𝑘𝐵𝑇 . (2.147)

Notice that Eq. (2.123) on page 45, computed for the monoatomic classical ideal gas,
and Eq. (2.146), obtained as the classical limit of the ideal quantum gas, are the same
expression (recall that ℎ = 2𝜋ℏ). Hence, we are recovering the classical gas as a limiting
case of the quantum gas. Furthermore, notice that this time we did not need to introduce
the ad hoc factor of 𝑁! needed for the classical gas. Hence, we can understand that factor
as a requirement that the classical gas be the classical limit of the quantum gas.

At last, we should also ask ourselves how to know when the classical limit is applicable
in terms of macroscopic variables. Let us notice that

𝑁 = −(𝜕Φ
𝜕𝜇

)
𝑇 ,𝑉

, (2.148a)

= (𝑘𝐵𝑇 ) 3
2 𝑉(2𝜋𝑚

ℏ2 )
3
2
𝑒

𝜇
𝑘𝐵𝑇 . (2.148b)

Hence, the classical limit is characterized by

𝑒
𝜇

𝑘𝐵𝑇 = ℏ3

(2𝜋𝑚𝑘𝐵𝑇)
3
2

𝑁
𝑉

, (2.149a)

≪ 1, (2.149b)

and hence the classical limit can be understood as a limit of high temperatures and/or
low densities.

2.7 Ultracold Fermi Gases

At low temperatures, we typically expect particles to be at the ground state. Nevertheless,
due to the Pauli exclusion principle, this is not possible for fermions. Instead, they “pile
up” on the lower energy states, with no two or more fermions ever occupying the same
state. Fig. 2.10 shows graphs of the occupation numbers of state as a function of the
state’s energy for finite and vanishing temperatures. We notice that the lower energy
states will always be excited, while the states with energies closer to the so-called Fermi
energy 𝜖𝐹 can get excited or unexcited as a consequence of thermal fluctuations.

Since the Pauli exclusion principle prevents the lower energy states from feeling effects
due to temperature, they won’t contribute to the specific heat. The states with energies
close to the Fermi energies, though, will contribute.

The Fermi energy 𝜖𝐹 is define as the chemical potential at vanishing temperature10.
This is motivated by the behavior of the number of particles per state at vanishing

10While we were working at the grand canonical potential to derive the formulae we’ll be working with,
it is experimentally more feasible to control the particle density than the chemical potential. Hence, we
need to invert a few relations and eventually obtain the chemical potential as a function determined by
temperature and density.
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𝜖𝐹

1⟨𝑛
⟩

𝜖

(a) 𝑇 > 0

𝜖𝐹

1⟨𝑛
⟩

𝜖

(b) 𝑇 = 0

Figure 2.10: Plot of the occupation numbers of fermions as a function of orbital energy, obtained
by plotting Eq. (2.141) on page 50 with the fermionic choice of sign while keeping
temperature and chemical potential constant. Notice that lower energy states are
filled. The relevance of temperature fluctuations is larger for the states close to the
Fermi energy 𝜖𝐹, for they can be excited or unexcited with temperature variations.
Hence, they are the ones that contribute the most to the specific heat.

temperature. Notice that Eq. (2.141) on page 50 implies

lim
𝑇 →0

⟨𝑛𝑗⟩FD
= lim

𝑇 →0

1
𝑒𝛽(𝜖𝑗−𝜇) ± 1

, (2.150a)

= Θ(𝜇|𝑇 =0 − 𝜖𝑗). (2.150b)

Hence, it is convenient to define 𝜖𝐹 ≡ 𝜇|𝑇 =0.

Completely Degenerate Fermi Gas

Let us then obtain some thermodynamic quantities for the ideal Fermi gas. Since the
computations involved will be pretty difficult, we’ll focus on the particular cases of
vanishing and small temperatures, although other cases can be dealt with, e.g., numerical
methods. For vanishing temperature, we say the gas is completely degenerate.

The internal energy and number of particles are given by

𝑈 = ∑
𝑗

⟨𝑛𝑗⟩ 𝜖𝑗, (2.151)

𝑁 = ∑
𝑗

⟨𝑛𝑗⟩ . (2.152)

For an ideal gas in the thermodynamic limit we can write

𝑁 = ∑
k

1

exp(ℏ2‖k‖2

2𝑚 − 𝜇) + 1
, (2.153a)

≈ ( 𝐿
2𝜋

)
3

∫ 1

exp(ℏ2‖k‖2

2𝑚 − 𝜇) + 1
d3𝑘 , (2.153b)

= 4𝜋( 𝐿
2𝜋

)
3

∫
+∞

0

𝑘2

exp(ℏ2𝑘2

2𝑚 − 𝜇) + 1
d𝑘 . (2.153c)
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At zero temperature we can then write

𝑁 = 4𝜋( 𝐿
2𝜋

)
3

∫
𝑘𝐹

0
𝑘2 d𝑘 , (2.154a)

= 4𝜋𝑉 𝑘3
𝐹

3(2𝜋3)
, (2.154b)

where 𝑘𝐹 is defined in terms of the Fermi energy through

𝜖𝐹 = ℏ2𝑘2
𝐹

2𝑚
. (2.155)

Notice, however, that this result does not take into account eventual degeneracies of
the energy spectrum. If all states have a 𝛾-fold degeneracy, then the correct number of
particles will be

𝑁 = 4𝜋𝛾𝑉 𝑘3
𝐹

3(2𝜋3)
. (2.156)

Electrons have twofold degeneracy due to being spin 1
2 particles. Hence, for electrons, we

have
𝑁 = 8𝜋𝑉 𝑘3

𝐹
3(2𝜋3)

. (2.157)

The internal energy can be dealt with in a similar fashion. We’ll have, by means of
the same steps,

𝑈 = 𝛾 ∑
k

1

exp(ℏ2‖k‖2

2𝑚 − 𝜇) + 1

ℏ2‖k‖2

2𝑚
, (2.158a)

= 4𝜋𝛾( 𝐿
2𝜋

)
3

∫
+∞

0

𝑘4

exp(ℏ2𝑘2

2𝑚 − 𝜇) + 1
d𝑘 , (2.158b)

= 𝛾ℏ2𝑉 𝑘5
𝐹

20𝜋2𝑚
. (2.158c)

Therefore, we learn that, for any value of 𝛾,
𝑈
𝑁

= 3
5

𝜖𝐹 (2.159)

From Eqs. (2.155), (2.158) and (2.159) on pages 54–55 we can obtain

𝜖𝐹 = ℏ2

2𝑚
(6𝜋2𝑁

𝛾𝑉
)

2
3

. (2.160)

We can define the Fermi temperature 𝑇𝐹 by

𝜖𝐹 = 𝑘𝐵𝑇𝐹. (2.161)

Using Eqs. (2.160) and (2.161) we can obtain the Fermi temperature of a given material
from properties such as its density, molecular mass, and so on. For sodium, one has
𝑇𝐹 ≈ 104 K. For copper, 𝑇𝐹 ≈ 8 × 104 K. For many metals, the Fermi temperature is
then way higher than ambient temperature, 𝑇 ≈ 300 K. Hence, we can treat these metals
at ambient temperature in a low-temperature expansion.

– 54 –



Degenerate Fermi Gas

Since for metals the Fermi temperature is often very high, we can obtain appropriate
descriptions for low temperatures. In this case, we say the gas is degenerate. However,
before we dive into the theory, it is worth recalling what we are ignoring.

In a metal, we do need to describe the behavior of the electrons on the conduction
band, but there are also phonons that should be accounted for. Phonons are what we
obtain once we quantize the vibrations of the atoms in the lattice. If we consider each of
them as free, the specific heat will have the form

𝑐𝑣 = 𝑐phonons
𝑣⏟

∼𝑇 3

+ 𝑐electrons
𝑣⏟

∼𝑇 2

. (2.162)

Electrons interact with phonons, so we could take these interactions into account. We
won’t. This simplification might be justified under the light of Eq. (2.162), which suggests
such contributions would be negligible. Does this make

sense?Electrons could also collide with each other, but we’ll also ignore this effect. Since
each collision must respect energy and momentum conservation in addition to Pauli’s
exclusion principle, few energy levels would be admissible, and hence these contributions
are suppressed.

Our procedure to study the Fermi gas will be to perform a low temperature expansion,
but another possibility would be to do as Kardar (2007b, Sec. 7.4) and Pathria and Beale
(2022, Sec. 8.1) and show that the pressure and density of the gas can be written as

𝑝
𝑘𝐵𝑇

= 𝑔
𝜆3 𝑓 5

2
(𝑧) and 𝑁

𝑉
= 𝑔

𝜆3 𝑓 3
2
(𝑧), (2.163)

where 𝑔 is a weight factor (determined, e.g., by spin or other internal structure of the
particles), 𝜆 is the thermal wavelength, and the Fermi–Dirac functions 𝑓𝜈(𝑧) are given by

𝑓𝜈(𝑧) = 1
Γ(𝜈)

∫
+∞

0

𝑥𝜈−1

𝑧−1𝑒𝑥 + 1
d𝑥 . (2.164)

Nevertheless, we’ll follow a different approach, favored, e.g., by Salinas (2001, Chap. 9).
Kardar (2007b, Sec. 7.5) seems to discuss how both approaches relate to each other.

Let us denote the density of states as a function of energy by 𝒟(𝜖). Then a change of
variables from k to 𝜖 would lead us to

𝒟(𝜖) = 1
4𝜋2 (2𝑚

ℏ2 )
3
2
𝜖 1

2 . (2.165)

For generality, we’ll keep 𝛾 unspecified. In this case, the expressions for the grand canonical
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partition function, internal energy, and number of particles become

log Ξ = 𝛾𝑉 ∫
+∞

0
𝒟(𝜖) log(1 + 𝑒−𝛽(𝜖−𝜇)) d𝜖 , (2.166)

𝑈 = 𝛾𝑉 ∫
+∞

0
𝜖𝒟(𝜖)𝑓(𝜖) d𝜖 , (2.167)

𝑁 = 𝛾𝑉 ∫
+∞

0
𝒟(𝜖)𝑓(𝜖) d𝜖 , (2.168)

where we denoted
𝑓(𝜖) = 1

𝑒𝛽(𝜖−𝜇) + 1
. (2.169)

Hence, our present goal is to understand integrals of the form

𝐼(𝑇 ) = ∫
+∞

0
𝑔(𝜖)𝑓(𝜖) d𝜖 , (2.170a)

= ∫
+∞

0

𝑔(𝜖)
𝑒𝛽(𝜖−𝜇) + 1

d𝜖 . (2.170b)

Let us then study 𝐼(𝑇 ) for small temperatures. Once we obtain general results for these
sorts of integrals, we’ll be able to apply them to the specific cases we’re interested in.

We can write
𝐼(0) = ∫

𝜇

0
𝑔(𝜖) d𝜖 , (2.171)

due to the behavior of the fermion occupation number at zero temperature. As a
consequence, notice that

𝐼(𝑇 ) − 𝐼(0) = ∫
𝜇

0

𝑔(𝜖)
𝑒𝛽(𝜖−𝜇) + 1

d𝜖 + ∫
+∞

𝜇

𝑔(𝜖)
𝑒𝛽(𝜖−𝜇) + 1

d𝜖 − ∫
𝜇

0
𝑔(𝜖) d𝜖 , (2.172a)

= ∫
+∞

𝜇

𝑔(𝜖)
𝑒𝛽(𝜖−𝜇) + 1

d𝜖 − ∫
𝜇

0

𝑔(𝜖)
1 + 𝑒−𝛽(𝜖−𝜇) d𝜖 , (2.172b)

= 𝑘𝐵𝑇 ∫
+∞

0

𝑔(𝜇 + 𝑘𝐵𝑇 𝜉)
𝑒𝜉 + 1

d𝜉 − ∫
0

𝛽𝜇

𝑔(𝜇 − 𝑘𝐵𝑇 𝜉)
𝑒𝜉 + 1

d𝜉 , (2.172c)

where in the last line we changed variables according to 𝜉 = 𝛽(𝜖 − 𝜇) in the first integral
and 𝜉 = −𝛽(𝜖 − 𝜇) in the second.

At this stage, since we’re assuming low temperatures, we can make two approximations.
The first of them is to consider the Taylor expansions

𝑔(𝜇 ± 𝑘𝐵𝑇 𝜉) = 𝑔(𝜇) ± 𝑘𝐵𝑇 𝜉𝑔′(𝜇) + (𝑘𝐵𝑇 )2𝜉2

2
𝑔″(𝜇) + ⋯ . (2.173)

The second of them is to take 𝛽𝜇, the lower limit of the second integral of Eq. (2.172) on
page 57, to infinity. Under these two approximations, Eq. (2.172) leads to

𝐼(𝑇 ) − 𝐼(0) ≈ 2𝑔′(𝜇)(𝑘𝐵𝑇 )2 ∫
+∞

0

𝜉
𝑒𝜉 + 1

d𝜉 . (2.174)
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This integral on Eq. (2.174) can be computed, and yields 𝜋2

12 . Hence, at last we obtain
the approximation

∫
+∞

0

𝑔(𝜖)
𝑒𝛽(𝜖−𝜇) + 1

d𝜖 ≈ ∫
𝜇

0
𝑔(𝜖) d𝜖 + 𝜋2

6
𝑔′(𝜇)(𝑘𝐵𝑇 )2. (2.175)

With this expression at hands, we can now start computing the expressions for the
grand canonical partition function, internal energy and number of particles in the low
temperature limit. This asymptotic approximation is known as Sommerfeld expansion.

Using the Sommerfeld expansion, we can find from Eqs. (2.165), (2.167) and (2.168)
on the preceding page that

𝑈 = 𝛾𝑉
10𝜋2 (2𝑚

ℏ2 )
3
2
𝜇 5

2 [1 + 5𝜋2

8
(𝑘𝐵𝑇

𝜇
)

2
], (2.176)

𝑁 = 𝛾𝑉
6𝜋2 (2𝑚

ℏ2 )
3
2
𝜇 3

2 [1 + 𝜋2

8
(𝑘𝐵𝑇

𝜇
)

2
]. (2.177)

In experimental situations, it is easier to control the number of particles than the
chemical potential, and hence we’d rather work with 𝑈(𝑇 , 𝑉 , 𝑁) instead of 𝑈(𝑇 , 𝑉 , 𝜇).
The grand canonical ensemble has served its purpose for us in allowing us to obtain
analytical expression, but we now would like to turn away from it in favor of quantities
that are easier to control in practice.

Let us then invert the expression 𝑁 = 𝑁(𝑇 , 𝑉 , 𝜇) to obtain 𝜇 as a function of
temperature, volume, and number of particles. We’ll begin by noticing that if we plug
Eq. (2.177) on the previous page on Eq. (2.160) on page 55 we’ll get to

𝜖𝐹 = ℏ2

2𝑚
(6𝜋2

𝛾𝑉
𝛾𝑉
6𝜋2 (2𝑚

ℏ2 )
3
2
𝜇 3

2 [1 + 𝜋2

8
(𝑘𝐵𝑇

𝜇
)

2
])

2
3

, (2.178a)

= 𝜇[1 + 𝜋2

8
(𝑘𝐵𝑇

𝜇
)

2
]

2
3

. (2.178b)

Using this result, we see that, at second order in temperature,

𝜇 = 𝜖𝐹[1 + 𝜋2

8
(𝑘𝐵𝑇

𝜇
)

2
]

− 2
3

, (2.179a)

≈ 𝜖𝐹[1 − 2
3

𝜋2

8
(𝑘𝐵𝑇

𝜇
)

2
], (2.179b)

≈ 𝜖𝐹[1 − 2
3

𝜋2

8
(𝑘𝐵𝑇

𝜖𝐹
)

2

], (2.179c)

= 𝜖𝐹[1 − 2
3

𝜋2

8
( 𝑇

𝑇𝐹
)

2

], (2.179d)
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where we neglected higher order corrections11. Notice that these expressions imply that
the chemical potential for the fermion gas is always positive and that it diminishes as the
temperature increases.

Using Eqs. (2.176), (2.177) and (2.179) on pages 57–58 we find

𝑈
𝑁

= 3𝜇
5

[1 + 5𝜋2

8
(𝑘𝐵𝑇

𝜇
)

2
][1 + 𝜋2

8
(𝑘𝐵𝑇

𝜇
)

2
]

−1

, (2.180a)

≈ 3𝜇
5

[1 + 5𝜋2

8
(𝑘𝐵𝑇

𝜇
)

2
][1 − 𝜋2

8
(𝑘𝐵𝑇

𝜇
)

2
], (2.180b)

≈ 3𝜇
5

[1 + 5𝜋2

8
( 𝑇

𝑇𝐹
)

2

][1 − 𝜋2

8
( 𝑇

𝑇𝐹
)

2

], (2.180c)

≈ 3𝜖𝐹
5

[1 − 𝜋2

12
( 𝑇

𝑇𝐹
)

2

][1 + 5𝜋2

8
( 𝑇

𝑇𝐹
)

2

][1 − 𝜋2

8
( 𝑇

𝑇𝐹
)

2

], (2.180d)

≈ 3𝜖𝐹
5

[1 + 5𝜋2

12
( 𝑇

𝑇𝐹
)

2

], (2.180e)

where once again we’ve kept the terms only up to second order.
The specific heat at constant volume is then given by

𝑐𝑣 = (𝜕𝑈
𝜕𝑇

)
𝑉 ,𝑁

, (2.181a)

= 3
5

𝑁𝜖𝐹
5
6

𝜋2 𝑇
𝑇 2

𝐹
, (2.181b)

= 3
2

𝑁𝑘𝐵(𝜋2

3
𝑇

𝑇𝐹
). (2.181c)

The final factor is often of the order of 10−2, which means the specific heat is way smaller
than the expected classical value of 3

2𝑁𝑘𝐵. This can be understood from the fact that, at
low temperatures, most electrons are filling the lower energy levels and won’t contribute
to conduction Hence, few electrons are actually contributing to the specific heat.

At last, it is interesting to point out that fermions have a non-vanishing pressure
(and even a non-vanishing isothermal compressibility) at vanishing temperature, as a
consequence of the Pauli exclusion principle. Show it!

2.8 Bose–Einstein Condensation

Since bosons do not obey the Pauli exclusion principle, their behavior at low temperatures
will be fairly different from the fermionic situations.

11To consider them would be inconsistent with our use of the Sommerfeld expansion.
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2𝜋ℏ2

𝑚𝑘𝐵
( 𝑁

𝛾𝑉
)

2
3

𝑇

0

𝜇(
𝑇

)
𝑘 𝐵

𝑇

Figure 2.11: Chemical potential as a function of temperature for the classical ideal gas. Notice
that, as expected, the chemical potential vanishes at a scale in which the quantum
effects are no longer negligible.

First and foremost, let us recall that, in accordance with Eq. (2.149) on page 52,
quantum effects will be relevant when

ℏ3

(2𝜋𝑚𝑘𝐵𝑇)
3
2

𝑁
𝑉

≳ 1, (2.182)

which characterizes the condition we’ll be working in. Furthermore, we recall that, as
argued just after Eq. (2.141) on page 50, the chemical potential for bosonic systems is
never positive: 𝜇 ≤ 0.

We then ask ourselves: if we hold 𝑁 constant (as is usually the case in practical
situations), how will 𝜇(𝑇 ) behave?

For large temperatures, it should resemble the classical ideal gas, since we’re back in
the classical limit. For a classical ideal gas, the chemical potential is given by (see Salinas
2001, Eq. (10.6))

𝜇(𝑇 )
𝑘𝐵𝑇

= log( 𝑁
𝛾𝑉

( 2𝜋ℏ2

𝑚𝑘𝐵𝑇
)

3
2

), (2.183)

which is plotted on Fig. 2.11 on the next page. Notice that 𝜇 vanishes for

𝑇 = 2𝜋ℏ2

𝑚𝑘𝐵
( 𝑁

𝛾𝑉
)

2
3

. (2.184)

As we mentioned, quantum effects kick in at scales in which Eq. (2.184) hold, and
hence the boson gas will not follow the classical curve exactly up to the point in which
the chemical potential vanishes. This is not unexpected, since we know 𝜇 ≤ 0 must hold.
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Nevertheless, there will still be a value of the temperature for which the chemical potential
will vanish. Below this critical temperature, the chemical potential will remain at zero.

As a preview of our next results, once that critical temperature is achieved, we’ll find
that there will be a maximum limit on the occupation number of excited states as bosons
condense on the ground state. Notice this behavior is fairly different from what we get in a
“normal phase” (as opposed to a condensed or coexisting phase), in which the occupation
density of each individual orbital tends to zero in the thermodynamic limit.

This is then the summary of the phenomenon known as Bose–Einstein condensation: a
macroscopic accumulation of particles at the ground state below a threshold temperature
at which the chemical potential vanishes.

Let us then proceed to the calculations. In the grand canonical ensemble for bosons,
the gas’ pressure and density are given by

𝑝
𝑘𝐵𝑇

= − 1
𝑉

∑
𝜖

log(1 − 𝑒−𝛽(𝜖−𝜇)), (2.185)

and

𝑁
𝑉

= 1
𝑉

∑
𝜖

1
𝑒𝛽(𝜖−𝜇) − 1

. (2.186)

For a free boson gas (𝜖k = ℏ2‖k‖2

2𝑚 ) in the normal phase, we can write these sums as integrals
according to

∑
k

log(1 − 𝑧𝑒−𝛽 ℏ2‖k‖2
2𝑚 ) = 4𝜋𝑉

(2𝜋)3 ∫
+∞

0
log(1 − 𝑧𝑒−𝛽 ℏ2𝑘2

2𝑚 )𝑘2 d𝑘 , (2.187)

and

∑
k

1

𝑧−1𝑒𝛽 ℏ2‖k‖2
2𝑚 − 1

= 4𝜋𝑉
(2𝜋)3 ∫

+∞

0

𝑘2

𝑧−1𝑒𝛽 ℏ2𝑘2
2𝑚 − 1

d𝑘 . (2.188)

However, these expressions will not be as easily adapted for the condensed and
coexisting phases. For 𝜖 = 0 and 𝜇 → 0, the occupation density 1

𝑒𝛽(𝜖−𝜇)−1 will blow up, and
so will the ground’s state contribution to the pressure in the form of log(1 − 𝑒−𝛽(𝜖−𝜇)).
As a consequence, these quantities must be considered in the thermodynamic limit.

In the thermodynamic limit, the logarithmic divergence due to the ground state will
vanish when compared to the linear divergence of the infinite volume. Hence, no problems
will arise with the pressure.

As for the density, things are a bit more complicated. The thermodynamic limit is
taken at constant density, and hence the occupation densities must remain finite. We can
then write

lim
𝜇→0

1
𝑉

1
𝑒−𝛽𝜇 − 1

= 𝑁0
𝑉

, (2.189)

where 𝑁0 is the (diverging) occupation number of the ground state. The ratio 𝑁0
𝑉 will

then remain finite. Removing a single point from the integral doesn’t change its result, so
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the integral on Eq. (2.188) on page 61 can still be used to compute the number of states
with 𝑘 > 0 (however, notice that in the coexistence region and in the condensed phase
the fugacity 𝑧 evaluates to 1, since 𝜇 = 0).

An alternative approach to treating the ground state separately is given by Pathria
and Beale (2022, App. F).

Under the light of these facts, we see that at the coexistence region we’ll get the
expression

𝑁
𝑉

= 𝑁0
𝑉

+ 4𝜋
(2𝜋)3 ∫

+∞

0

𝑘2

𝑒𝛽 ℏ2𝑘2
2𝑚 − 1

d𝑘 . (2.190)

Let us compute this integral. Firstly we notice that a change of variables 𝜉 = 𝛽ℏ2𝑘2

2𝑚
leads us to

∫
+∞

0

𝑘2

𝑒𝛽 ℏ2𝑘2
2𝑚 − 1

d𝑘 = ∫
+∞

0

2𝑚𝜉
𝛽ℏ2

1
𝑒𝜉 − 1

d(√2𝑚𝜉
𝛽ℏ2 ) , (2.191a)

= 1
2

( 2𝑚
𝛽ℏ2 )

3
2

∫
+∞

0

𝜉 1
2

𝑒𝜉 − 1
d𝜉 . (2.191b)

However, we should notice that, for 𝑠 > 1,

∫
+∞

0

𝜉𝑠−1

𝑒𝜉 − 1
d𝜉 = ∫

+∞

0

𝜉𝑠−1𝑒−𝜉

1 − 𝑒−𝜉 d𝜉 , (2.192a)

= ∫
+∞

0
𝜉𝑠−1

+∞

∑
𝑛=1

𝑒−𝑛𝜉 d𝜉 , (2.192b)

=
+∞

∑
𝑛=1

∫
+∞

0
𝜉𝑠−1𝑒−𝑛𝜉 d𝜉 , (2.192c)

=
+∞

∑
𝑛=1

1
𝑛𝑠 ∫

+∞

0
𝜌𝑠−1𝑒−𝜌 d𝜌 , (2.192d)

=
+∞

∑
𝑛=1

Γ(𝑠)
𝑛𝑠 , (2.192e)

= Γ(𝑠)
+∞

∑
𝑛=1

1
𝑛𝑠 , (2.192f)

= Γ(𝑠)𝜁(𝑠), (2.192g)

where on Eq. (2.192d) on the following page we made the change of variables 𝜌 = 𝑛𝜉. In
the previous expressions, Γ(𝑠) is Euler’s gamma function (see Arfken, Weber, and Harris
2013, Chap. 13) and 𝜁(𝑠) is Riemann’s zeta function (Arfken, Weber, and Harris 2013,
Sec. 13.5).

Hence, our integral of interest evaluates to

∫
+∞

0

𝑘2

𝑒𝛽 ℏ2𝑘2
2𝑚 − 1

d𝑘 = 1
2

( 2𝑚
𝛽ℏ2 )

3
2
Γ(3

2
)𝜁(3

2
). (2.193)
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Using the facts that Γ(𝑧 + 1) = 𝑧Γ(𝑧) (Arfken, Weber, and Harris 2013, Eq. (13.2)) and
that Γ(1

2) =
√

𝜋 (Arfken, Weber, and Harris 2013, Eq. (13.8)), we find that Γ(3
2) =

√
𝜋

2 ,
and hence

∫
+∞

0

𝑘2

𝑒𝛽 ℏ2𝑘2
2𝑚 − 1

d𝑘 = √𝜋
2

( 𝑚
𝛽ℏ2 )

3
2
𝜁(3

2
). (2.194)

Therefore, we see that
𝑁
𝑉

= 𝑁0
𝑉

+ ( 𝑚
2𝜋𝛽ℏ2 )

3
2
𝜁(3

2
). (2.195)

If we now impose 𝑁0 = 0, we’ll be considering the normal phase12, and can then use
this expression to compute the critical temperature 𝑇0 at which the system starts to
condense. Solving for the temperature on Eq. (2.195) at 𝑁0 = 0 leads us to

𝑇0 = 2𝜋ℏ2

𝑚𝑘𝐵𝜁(3
2)

2
3

(𝑁
𝑉

)
2
3

, (2.196)

which is the Bose–Einstein temperature for a gas of free bosons.
Notice that we can now write the density of excited states in the form

𝑁𝑒
𝑉

= ( 𝑚
2𝜋𝛽ℏ2 )

3
2
𝜁(3

2
), (2.197a)

= 𝑇 3
2 ( 𝑚𝑘𝐵

2𝜋ℏ2 )
3
2

𝜁(3
2

), (2.197b)

= ( 𝑇
𝑇0

)
3
2 𝑁

𝑉
. (2.197c)

Therefore, since 𝑁 = 𝑁0 + 𝑁𝑒, we find that

𝑁0
𝑁

= 1 − ( 𝑇
𝑇0

)
3
2

. (2.198)

The behavior of 𝑁0 and 𝑁𝑒 with temperature is plotted on Fig. 2.12 on the following
page.

Superfluidity of Helium-4

Helium-4 has a behavior that resembles that of a free boson gas at low temperatures.
Namely, just as a free boson gas has a normal and a condensed phase, He4 has a normal and
a superfluid phase. The second-order phase transition happens at the so-called “𝜆 point”,
with temperature 𝑇𝜆 ≈ 2.17 K, pressure 𝑝𝜆 ≈ 1 atm, and specific volume 𝑣𝜆 ≈ 46.2 Å3

(data from Salinas 2001, p. 193).
12In the normal phase, the individual occupation densities of all states tend to zero in the thermodynamic

limit, including the ground state. Hence, we can compute all of the occupation numbers by considering
only the integral.
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1
𝑇
𝑇0

1

𝑁0
𝑁
𝑁𝑒
𝑁

Figure 2.12: Behavior of the occupation numbers of ground and excited states as functions
of temperature. Notice how the states condense at the ground state below the
Bose–Einstein temperature.

We can compute the Bose–Einstein temperature of helium-4 by treating it as if it were
a free gas and using the value of the specific volume at the 𝜆 point, together with the
fact that the mass of a helium-4 atom is roughly 4𝑚𝑝, where 𝑚𝑝 is the mass of a proton,
having the value of 𝑚𝑝 ≈ 1.67 × 10−27 kg (Particle Data Group et al. 2022). Using these
values, one gets to 𝑇0 ≈ 3.14 K. This is quite close to the experimental value 𝑇𝜆 ≈ 2.17 K,
hinting at the fact that the behaviour of helium-4 is related to its bosonic character. Still,
we should recall that it is a bad approximation to treat a liquid as a gas of free particles.

For more on superfluids and helium-4, see the texts by Altland and Simons (2010, Sec.
6.3), Kardar (2007b, Sec. 7.7), Lancaster and S. Blundell (2014, Cap. 42), and Salinas
(2001, Sec. 10.1).

Normal Phase

Let us next consider how the gas behaves in the normal phase, when 𝑇 > 𝑇0 and 𝜇 < 0.
In this case, the amount of particles condensed in the ground state is negligible, and hence
we won’t have to bother about treating the ground state separately (we’ll do it either
way, just to show its individual contribution vanishes). Hence, we can compute the grand
canonical partition function in the following manner.

From Eq. (2.138) on page 50 we know that

1
𝑉

log Ξ(𝛽, 𝑉 , 𝑧) = − 1
𝑉

log(1 − 𝑧) − 1
𝑉

∑
𝑗≠0

log(1 − 𝑧𝑒−𝛽𝜖𝑗). (2.199)
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We can then approximate the sum with an integral by writing

1
𝑉

log Ξ(𝛽, 𝑉 , 𝑧) = − 1
𝑉

log(1 − 𝑧) − 1
𝑉

𝑉
(2𝜋)3 ∫ log(1 − 𝑧𝑒−𝛽 ℏ2‖k‖2

2𝑚 ) d3𝑘 , (2.200a)

= − 1
𝑉

log(1 − 𝑧) − 4𝜋
8𝜋3 ∫

+∞

0
log(1 − 𝑧𝑒−𝛽 ℏ2𝑘2

2𝑚 )𝑘2 d𝑘 . (2.200b)

In the thermodynamic limit, we’ll take 𝑉 → +∞, but 𝑧 will remain bounded away from
1. Hence, we’ll obtain

1
𝑉

log Ξ(𝛽, 𝑉 , 𝑧) = − 1
2𝜋2 ∫

+∞

0
log(1 − 𝑧𝑒−𝛽 ℏ2𝑘2

2𝑚 )𝑘2 d𝑘 . (2.201)

If we now change integration variables to 𝜖 = ℏ2𝑘2

2𝑚 , we get

1
𝑉

log Ξ(𝛽, 𝑉 , 𝑧) = − 1
4𝜋2 (2𝑚

ℏ2 )
3
2

∫
+∞

0
log(1 − 𝑧𝑒−𝛽𝜖)𝜖 1

2 d𝜖 . (2.202)

Since 𝑧 won’t be 1, but is bounded above by 1, we can use it to expand the integrand
in a Taylor series. We find

1
𝑉

log Ξ(𝛽, 𝑉 , 𝑧) = 1
4𝜋2 (2𝑚

ℏ2 )
3
2

∫
+∞

0
𝜖 1

2

+∞

∑
𝑛=1

𝑧𝑛

𝑛
𝑒−𝑛𝛽𝜖 d𝜖 , (2.203a)

= 1
4𝜋2 (2𝑚

ℏ2 )
3
2

+∞

∑
𝑛=1

𝑧𝑛

𝑛
∫

+∞

0
𝜖 1

2 𝑒−𝑛𝛽𝜖 d𝜖 , (2.203b)

= 1
4𝜋2 (2𝑚

ℏ2 )
3
2

+∞

∑
𝑛=1

𝑧𝑛

𝑛

√
𝜋

2
1

(𝑛𝛽)
3
2

, (2.203c)

= ( 𝑚
2𝜋𝛽ℏ2 )

3
2

+∞

∑
𝑛=1

𝑧𝑛

𝑛 5
2

, (2.203d)

= 1
𝜆3

+∞

∑
𝑛=1

𝑧𝑛

𝑛 5
2

, (2.203e)

where 𝜆 is the thermal wavelength.
If we define the Bose–Einstein function 𝑔𝜈(𝑧) through13

𝑔𝜈(𝑧) ≡
+∞

∑
𝑛=1

𝑧𝑛

𝑛𝜈 , (2.204)

13Bose–Einstein functions are discussed in detail, for example, by Pathria and Beale (2022, App. D).
These functions are “dual” to the ones that we mentioned on Eq. (2.163) on page 56. Notice that writing
𝑔𝜈(𝑧) for the Bose–Einstein functions is the choice made by Pathria and Beale (2022) and Salinas (2001),
but Kardar (2007b) uses 𝑓±

𝜈 (𝑧) for the Bose–Einstein and Fermi–Dirac functions, with the sign determining
the choice (+ for bosons, − for fermions).
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then we may write
1
𝑉

log Ξ(𝛽, 𝑉 , 𝑧) = 1
𝜆3 𝑔 5

2
(𝑧). (2.205)

It then follows from Eqs. (2.115) and (2.116) on page 43 and on page 44 that

𝑁 = 𝑧( 𝜕
𝜕𝑧

log Ξ)
𝛽

= 𝑉
𝜆3 𝑔 3

2
(𝑧), (2.206)

𝑈 = −( 𝜕
𝜕𝛽

log Ξ)
𝑧

= 3𝑉
2𝛽𝜆3 𝑔 5

2
(𝑧). (2.207)

We can also obtain the pressure through

𝑝
𝑘𝐵𝑇

= ( 𝜕
𝜕𝑉

log Ξ)
𝑇 ,𝜇

= 1
𝜆3 𝑔 5

2
(𝑧). (2.208)

If we want to obtain the more convenient form 𝑈(𝑇 , 𝑉 , 𝑁), we’ll need to face the laborious
task of inverting Eq. (2.206), which might need to be performed numerically.

Eqs. (2.206) and (2.208) should be compared to Eq. (2.163) on page 56 (notice that
we’re doing the bosonic computations with 𝛾 = 1, which explains why there is no weight
factor in our currency results). Both results can actually be obtained at once, as done by
Kardar (2007b, Sec. 7.4).

As an example, let us compute the specific heat at constant volume of a gas of free
bosons at the normal phase. It is given by

𝑐𝑣 = 1
𝑁

(𝜕𝑈
𝜕𝑇

)
𝑉 ,𝑁

, (2.209a)

= −𝑘𝐵𝛽2

𝑁
(𝜕𝑈

𝜕𝛽
)

𝑉 ,𝑁
. (2.209b)

Unfortunately, we do not know 𝑈(𝑇 , 𝑉 , 𝑁). However, we can bypass this difficulty by
employing Jacobian methods (Salinas 2001, App. A.5). We notice that14

(𝜕𝑈
𝜕𝛽

)
𝑁

= 𝜕(𝑈, 𝑁)
𝜕(𝛽, 𝑁)

, (2.210a)

= 𝜕(𝑈, 𝑁)
𝜕(𝛽, 𝑧)

𝜕(𝛽, 𝑧)
𝜕(𝛽, 𝑁)

, (2.210b)

= [(𝜕𝑈
𝜕𝛽

)
𝑧
(𝜕𝑁

𝜕𝑧
)

𝛽
− (𝜕𝑈

𝜕𝑧
)

𝛽
(𝜕𝑁

𝜕𝛽
)

𝑧
][𝜕(𝑁, 𝛽)

𝜕(𝑧, 𝛽)
]

−1

, (2.210c)

= [(𝜕𝑈
𝜕𝛽

)
𝑧
(𝜕𝑁

𝜕𝑧
)

𝛽
− (𝜕𝑈

𝜕𝑧
)

𝛽
(𝜕𝑁

𝜕𝛽
)

𝑧
][(𝜕𝑁

𝜕𝑧
)

𝛽
]

−1

, (2.210d)

= (𝜕𝑈
𝜕𝛽

)
𝑧

− (𝜕𝑈
𝜕𝑧

)
𝛽
(𝜕𝑁

𝜕𝛽
)

𝑧
[(𝜕𝑁

𝜕𝑧
)

𝛽
]

−1

. (2.210e)

14Since the volume is always constant in this computation, we’ll omit it.
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Eqs. (2.206) and (2.207) allow us to compute all of these expressions. We have

(𝜕𝑈
𝜕𝛽

)
𝑧

= − 15𝑉
4𝛽2𝜆3 𝑔 5

2
(𝑧), (2.211)

(𝜕𝑈
𝜕𝑧

)
𝛽

= 3𝑉
2𝛽𝜆3𝑧

𝑔 3
2
(𝑧), (2.212)

(𝜕𝑁
𝜕𝛽

)
𝑧

= − 3𝑉
2𝛽𝜆3 𝑔 3

2
(𝑧), (2.213)

(𝜕𝑁
𝜕𝑧

)
𝛽

= 𝑉
𝜆3𝑧

𝑔 1
2
(𝑧). (2.214)

We can now use these derivatives to compute the specific heat. It will be given by

𝑐𝑣 = −𝑘𝐵𝛽2

𝑁
[− 15𝑉

4𝛽2𝜆3 𝑔 5
2
(𝑧) − ( 3𝑉

2𝛽𝜆3𝑧
𝑔 3

2
(𝑧))(− 3𝑉

2𝛽𝜆3 𝑔 3
2
(𝑧))( 𝑉

𝜆3𝑧
𝑔 1

2
(𝑧))

−1
], (2.215a)

= 𝑘𝐵𝛽2𝑉
𝑁

[ 15
4𝛽2𝜆3 𝑔 5

2
(𝑧) − ( 3

2𝛽𝜆3𝑧
𝑔 3

2
(𝑧))( 3𝑉

2𝛽𝜆3 𝑔 3
2
(𝑧))( 𝑉

𝜆3𝑧
𝑔 1

2
(𝑧))

−1
], (2.215b)

= 𝑘𝐵𝛽2𝑉
𝑁

[ 15
4𝛽2𝜆3 𝑔 5

2
(𝑧) −

9𝑔 3
2
(𝑧)2

4𝛽2𝜆3𝑔 1
2
(𝑧)

], (2.215c)

= 3𝑘𝐵
2

𝑉
𝑁

1
𝜆3 [5

2
𝑔 5

2
(𝑧) − 3

2
𝑔 3

2
(𝑧)2

𝑔 1
2
(𝑧)

], (2.215d)

= 3𝑘𝐵
2

[5
2

𝑔 5
2
(𝑧)

𝑔 3
2
(𝑧)

− 3
2

𝑔 3
2
(𝑧)

𝑔 1
2
(𝑧)

] 𝑉
𝑁

𝑔 3
2
(𝑧)

𝜆3 , (2.215e)

= 3𝑘𝐵
2

[5
2

𝑔 5
2
(𝑧)

𝑔 3
2
(𝑧)

− 3
2

𝑔 3
2
(𝑧)

𝑔 1
2
(𝑧)

], (2.215f)

where the last step employed Eq. (2.206) on the previous page. We then would need to
eliminate the fugacity in favor of the number of particles which, as we previously said, is
a laborious task.

Let us consider how the specific heat behaves at high and low temperatures. Close to
the phase transition at the Bose–Einstein temperature, we have 𝑧 = 1. Notice that for
𝜈 > 1

𝑔𝜈(1) =
+∞

∑
𝑛=1

1
𝑛𝜈 , (2.216a)

= 𝜁(𝜈), (2.216b)

i.e., the Bose–Einstein functions reduce to Riemann’s zeta function. Hence, we can use
known values of 𝜁(𝜈) to obtain 𝑔 3

2
(1) ≈ 2.612 38 and 𝑔 5

2
(1) ≈ 1.341 49. For 𝜈 ≤ 1, the series

defining 𝑔𝜈(1) diverges15, and therefore 𝑔 1
2
(1) → ∞. Hence, close to the Bose–Einstein

15𝜁(𝜈) doesn’t diverge for 𝜈 < 1 because it is defined as an analytic continuation. 𝑔𝜈(𝑧), however, is
not an analytic continuation, but the sum itself.
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phase transition we have

lim
𝑇 →𝑇 +

0

𝑐𝑣 = 15𝑘𝐵
4

𝜁(5
2)

𝜁(3
2)

< ∞. (2.217)

For high temperatures, we have 𝑧 = 𝑒𝛽𝜇 ≪ 1, since 𝜇 < 0. Hence, we can make the
approximation

𝑔𝜈(𝑧) =
+∞

∑
𝑛=1

𝑧𝑛

𝑛𝜈 , (2.218a)

≈ 𝑧 + 𝒪(𝑧2). (2.218b)

Hence, for high temperatures, the specific heat on Eq. (2.215) on the preceding page will
behave according to

lim
𝑇 →+∞

𝑐𝑣 = 3𝑘𝐵
2

[5
2

𝑧
𝑧

− 3
2

𝑧
𝑧

] = 3𝑘𝐵
2

, (2.219)

matching the equipartition theorem. Notice that 𝑐𝑣(𝑇0) > 𝑐𝑣(+∞). This will lead to a
“cusp” in the graph for the specific heat as a function of temperature (see Kardar 2007b,
Fig. 7.11; Pathria and Beale 2022, Fig. 7.4).

Coexistence Region

For 𝑇 ≤ 𝑇0 (and 𝜇 < 0) we know from Eqs. (2.206) and (2.207) on page 65 that the mean
energy and number of particles in the excited states for the condensed region will be

𝑈 = 3
2

𝑉
𝛽𝜆3 𝜁(5

2
), (2.220)

and

𝑁𝑒 = 𝑉
𝜆3 𝜁(3

2
), (2.221)

where we used the fact that 𝜁(𝜈) = 𝑔𝜈(1) for 𝜈 > 1. Furthermore the number of states in
the ground state will be given by

𝑁0 = 𝑁 − 𝑁𝑒. (2.222)

Using the expression for the internal energy, we can find that

𝑐𝑣 = 1
𝑁

(𝜕𝑈
𝜕𝑇

)
𝑉 ,𝑁

, (2.223a)

= 15𝑉
4𝑁

( 𝑘𝐵𝑚
2𝜋ℏ2 )

3
2

𝑇 3
2 . (2.223b)

This expression vanishes at 𝑇 = 0, but matches our previous expression at 𝑇 = 𝑇0. Hence,
the specific heat is continuous with temperature, even though it is not differentiable at the
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Bose–Einstein temperature16. The plot of the specific heat as a function of temperature
can be found, e.g., in the books by Kardar (2007b, Fig. 7.11) and Pathria and Beale (2022,
Fig. 7.4) and has a finite, but non-differentiable, peak at the Bose–Einstein temperature.

We could compute the pressure as well and find that it vanishes in the limit of low
temperatures.

3 Phase Transitions
Knowing how to work with equilibrium Statistical Mechanics, we’ll start to investigate
more complicated systems displaying phenomena known as phase transitions. Notice
that a phase transition does not imply nonequilibrium: in fact, we’ll firstly consider
phase transitions while employing equilibrium methods. Later, we shall move on to
nonequilibrium phenomena.

3.1 Main Notions

Before we begin with specific studies of examples of phase transitions, we’ll first discuss
some general notions concerning them. This section is based partially on Prof. Fiore’s
lectures and slideshow, and partially on further literature. Notably the books by S.
Blundell and K. M. Blundell (2010, Chap. 28) and Kardar (2007a, Sec. 1.3).

So far, we’ve been focusing mainly on non-interacting systems. Nevertheless, once
interactions are turned on very interesting phenomena might occur. Among them, there
is, for example, the fact that a single substance can have many different macroscopic
properties depending on the particular state it is in—e.g., depending on the pressure and
temperature, water might be a liquid, a solid, a vapor, or even some more diverse phases.

Mathematically, all of these phases can be described in terms of a fundamental
equation, i.e., we can compute their properties starting from a free energy or from a
partition function. Hence, since features of the system change drastically from a phase to
another (the density, for example), these phase transitions correspond to singularities in
the free energy, i.e., to discontinuities or divergences in the derivatives of the free energy1.
Notice that said derivatives are exactly the thermodynamic properties of the system, and
hence discontinuities in them means exactly drastic changes between different phases.
Furthermore, note also that these phenomena can happen in many systems, not only
fluids: magnetic systems, metallic alloys, liquid crystals, and many other examples also
feature such properties.

From a technical point of view, it is important to notice that phase transitions only
occur at the thermodynamic limit, in the sense that we can’t have singularities on the
free energy for finite 𝑁, since in this case the partition function will always be analytic.
Hence, we’ll study the systems in the thermodynamic limit with the goal of finding and

16In the opinion of Prof. Fiore, the continuity of specific heat is what makes Bose–Einstein condensation
resemble a first-order phase transition, instead of a second-order phase transition. For a second-order
transition, the specific heat would typically diverge.

1Of the Gibbs’ free energy, to be more precise, as we shall see later on.
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understanding the origin of discontinuities in the derivatives of the free energy, hence
obtaining information about what happens in real physical systems.

At this point, it is natural to ask what is meant by a phase. “A homogenous system,
that is, completely uniform with regard to specific properties, constitutes a thermodynamic
phase” (M. J. de Oliveira 2013, p. 104). Notice this isn’t always the case. When boiling
water on a stove, the system (water) is heterogeneous, presenting two coexistent phases.

As for a phase transition, we can understand it in many systems2 as an analytical
singularity in the system’s Gibbs free energy. The specific choice of the Gibbs free energy is
due to the fact that the Gibbs free energy per particle is a function of intensive quantities
only, and we need to have a singularity as a function of the intensive quantities, since
they have to match even for two phases in coexistence. On the other hand, the volume,
for example, can be different for two phases in coexistence.

We may then classify different types of phase transitions. Ehrenfest gave such a
classification according to the rule that a phase transition is said to be of 𝑛th order if the
𝑛th derivative of the Gibbs free energy presents a discontinuity. Nevertheless, there are
important examples of phase transitions that fall outside of this scheme, such as the phase
transitions that occur on the two-dimensional Ising model and on liquid helium. The
Ising model, for example, has a derivative becoming infinite rather than discontinuous.
Hence, eventually the Ehrenfest model became insufficient (for more historical details, see
Jaeger 1998).

A more modern classification scheme is to classify as first-order phase transitions (or
discontinuous phase transitions) those that have a latent heat (see p. Section 3.1 on
page 72). Second-order phase transitions (or continuous phase transitions) are then the
remaining ones3 (S. Blundell and K. M. Blundell 2010, Sec. 28.7). Liquid-gas phase
transitions are often examples of first-order phase transitions4, while a piece of iron losing
its ferromagnetic properties at high temperatures is an example of a second-order phase
transition.

Notice that discontinuities in the derivatives of the free energy are a quite physical
effect. For a simple fluid, the first derivatives of the Gibbs free energy are the entropy, the
volume, and the chemical potential. Hence, an example of a first-order phase transition is
a sudden “jump” in the density of a fluid.

First-Order Phase Transitions for Fluids

In order to have some concreteness, let us discuss first-order phase transitions in fluid
systems. In this case, let us recall that when pressure and temperature are held fixed, the
Second Law of Thermodynamics implies the Gibbs free energy is minimized (Fermi 1956,

2I am not fully sure if there is a completely general definition of phase transition, but singularities in
the free energy do encompass a wide class due to our previous arguments.

3The classification given by Prof. Fiore was that first-order phase transitions are those with disconti-
nuities on a first derivative of the free energy, while second-order transitions are those with a divergence
on a second derivarive of the free energy.

4The use of the word “often” is because at the so-called critical point the transition does not involve a
latent heat, and hence it becomes a continuous transition.
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Sec. 18). Therefore, given a pressure and temperature, the system will be in the state
with a minimum of Gibbs free energy.

In the situation in which the Gibbs free energy might have more than one minimum we
will have coexistence of phases, though. If we then follow a coexistence curve (such as the
ones shown on Fig. 3.1 on the next page), we’ll often see the two minima of the Gibbs free
energy coming closer together until they merge. This final point where the two minima
merge is known as a critical point. Notice that when a coexistence line terminates, we
can go from a phase to another by going around the critical point, without ever having a
phase transition, since we haven’t found any singularities of the free energy along the way.
Hence, this illustrates that, fundamentally, there is no difference between the liquid and
gas phases. Furthermore, at the critical point, the transition actually becomes continuous,
and hence it is now a second-order phase transition.

𝑇𝑐
𝑇

0

𝑝𝑐

𝑝

solid liquid

gas

Figure 3.1: Typical form of the pressure-temperature phase diagram for a fluid. The critical
points and the triple point are highlighted. This graph was based on the figure by
Kardar (2007a, Fig. 1.3).

It should be noted that not all coexistence lines end in a critical point. S. Blundell and
K. M. Blundell (2010, p. 337) point out that the liquid-gas transition doesn’t involve any
symmetry breaking, which is why it is possible to go around a fixed point. A liquid-solid
transition, however, does involve symmetry breaking: while the liquid has no preferred
directions, a solid is often more organized. As a consequence, there is a fundamental
difference between both phases and it is not possible to “cheat” by going around a critical
point.

It is also interesting to wonder what happens when we discuss the thermodynamics of
phase transitions in terms of pressure and volume. A typical 𝑝-𝑣 diagram is shown on
Fig. 3.2 on page 72. We see that, if we consider volume as a function of pressure (i.e., if
we recall that 𝑉 = (𝜕𝐺

𝜕𝑝 )
𝑇 ,𝑁

, we notice that there are discontinuities in volume below the
critical temperature 𝑇𝑐. The transition can be seen not as lines on the phase diagram,
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but as a coexistence region involving mixtures of liquid and gas. Of course, we can still
“bypass” the phase transition by going around the critical point, as shown on Fig. 3.3 on
page 73.

𝑉𝑙 𝑉𝑐 𝑉𝑔

𝑉

0

𝑝𝑐

𝑝

Figure 3.2: Typical form of the isotherms for a fluid. The grey region is the coexistence region
between liquid and gas phases. The dashed line corresponds to the critical temperature,
while the highlighted point is the critical point. Notice the isotherms are flat on the
coexistence region. 𝑉𝑙 stands for the “liquid volume”, 𝑉𝑔 for the “gaseous volume”.
This graph was based on the code by christian (2016) and on the figure by Kardar
(2007a, Fig. 1.3).

Figs. 3.2 and 3.3 on the following page and on page 73 are built upon the equations
for a Van der Waals gas, which doesn’t have a solid phase. Nevertheless, for other fluids
there often is a solid phase, and even a point where the three phases coexist, known as a
triple point and shown on Fig. 3.1.

Notice that Fig. 3.2 on the next page allows us to understand some of the fluid’s
behavior as 𝑇 → 𝑇𝑐. For high temperatures, the isotherms tend to become flatter as
the temperature is lowered, and hence we see that the isothermal compressibility 𝜅𝑇 will
diverge as 𝑇 → 𝑇 +

𝑐 . For low temperatures, we see that the coexistence region at a fixed
temperature gets smaller as 𝑇 → 𝑇 −

𝑐 . The differences in density between a gas and a
liquid will vanish at the critical temperature.

An experimental observation that is also worth mentioning is that, close to criticality,
the fluid will acquire a “milky” appearance. This phenomenon, known as critical opales-
cence, is due to the fact that there are large density fluctuations close to the critical point,
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𝑉𝑙 𝑉𝑐 𝑉𝑔

𝑉

0

𝑝𝑐

𝑝

Figure 3.3: Example of how to “bypass” a phase transition in a 𝑝-𝑣 diagram by using isobaric
and isothermal transformations.

which also leads to large fluctuations in the refractive index. Another example of large
variations of density is the bubbling of boiling water on a saucepan. These effects mean
that our usual approach of assuming thermodynamic quantities are well-defined breaks
down close to criticality, and we might need to resort to other techniques (S. Blundell
and K. M. Blundell 2010, p. 336; Kardar 2007a, p. 10).

While we are focusing a lot on how volume signals phase transitions, it is worth
recalling that entropy is also a derivative of the Gibbs free energy, for 𝑆 = −(𝜕𝐺

𝜕𝑇 )
𝑝,𝑁

.
When two phases have different entropies, we need to supply extra heat to change one
into the other. This heat, known as latent heat, will then be given by

𝐿 = 𝑇 Δ𝑆 = 𝑇 (𝑆2 − 𝑆1). (3.1)

Hence, we’ll get a spike on the heat capacity to account for this discontinuity on entropy.
At the phase transition, both phases (say, liquid and gas) have the same value for the

Gibbs free energy. Hence, we can write

𝑔𝑔(𝑇 , 𝑝) = 𝑔𝑙(𝑇 , 𝑝), (3.2a)
−𝑠𝑔 d𝑇 + 𝑣𝑔 d𝑝 = −𝑠𝑙 d𝑇 + 𝑣𝑙 d𝑝 , (3.2b)
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from which we get

d𝑝
d𝑇

=
𝑠𝑔 − 𝑠𝑙

𝑣𝑔 − 𝑣𝑙
, (3.3a)

= 𝑙
𝑇 (𝑣𝑔 − 𝑣𝑙)

, (3.3b)

where 𝑙 = 𝐿 is the latent heat per particle (or per mole).
Eq. (3.3) on page 73 is known as the Clausius–Clapeyron equation, and it is particularly

useful to understand and construct 𝑝-𝑇 diagrams. For example, the coexistence line between
water’s solid and liquid phases has a negative slope, as illustrated on the sketch of Fig. 3.4
on the next page. Why is that so?

𝑇𝑐
𝑇

0

𝑝𝑐

𝑝

solid liquid

gas

Figure 3.4: Sketch of the pressure-temperature phase diagram for water. The critical points and
the triple point are highlighted. Notice that the coexistence line between the solid
and liquid phases has a negative slope. This is just a sketch: real water actually has
many different ice phases and it is believed it might even have a second critical point.

This can be understood with the Clausius–Clapeyron equation. For the liquid-vapour
phase transition, we have 𝑙𝑣 > 0 and 𝑣𝑣 > 𝑣𝑙. Hence,

d𝑝
d𝑇

= 𝑙𝑣
𝑇 (𝑣𝑣 − 𝑣𝑙)

> 0. (3.4)

For the solid-liquid transition, we also have 𝑙𝑙 > 0, but 𝑣𝑠 > 𝑣𝑙, for ice floats on water.
Hence,

d𝑝
d𝑇

= 𝑙𝑙
𝑇 (𝑣𝑙 − 𝑣𝑠)

< 0, (3.5)

which explains the diagram.

– 73 –



Thermodynamic Instabilities and First-Order Phase Transitions

As we mentioned at the end of Section 2.4, the Van der Waals gas presents instabilities at
low temperatures. As we can see on Fig. 2.6 on page 40, there are isotherms in which
at which the isothermal compressibility 𝜅𝑇 = − 1

𝑉(𝜕𝑉
𝜕𝑝 )

𝑇 ,𝑁
becomes negative. This is a

problem, because it means that the more we compress the gas, the more it expands,
making it mechanically unstable. In many situations, and in this in particular, that
problematic behavior is actually signaling that the gas undergoes a phase transition and
becomes a liquid. The issue actually arises from our mean field approximation when
deriving the Van der Waals equation, and now we must fix the expression to recover
stability.

To solve this issue, let us look at what is happening with the Helmholtz free energy.
Notice that the Helmholtz free energy will be given by (cf. Eq. (2.81) on page 34)

(𝜕𝑓
𝜕𝑣

)
𝑇

= −𝑝, (3.6a)

= − 𝑘𝐵𝑇
𝑣 − 𝑏

+ 𝑎
𝑣2 , (3.6b)

𝑓(𝑇 , 𝑣) = −𝑘𝐵𝑇 log(𝑣 − 𝑏) − 𝑎
𝑣

+ 𝑓0(𝑇 ), (3.6c)

where 𝑓0(𝑇 ) is some arbitrary function depending on temperature, but not on the volume.
Let us plot the pressure and Helmholtz free energy for some convenient temperature5.
These plots are shown on Fig. 3.5 on the following page.

Fig. 3.5b makes it clear that the instability region corresponds to a region in which the
Helmholtz free energy fails to be a convex function of the volume. This means the Gibbs
free energy is ill-defined, since we need the Helmholtz free energy to be a convex function
to perform a Legendre transformation. The so-called Maxwell construction consists in
replacing the concave region of the Helmholtz free energy with a straight line, which is
doubly tangent to the free energy’s graph. In this way, we can obtain an expression for
the Helmholtz free energy that is differentiable and convex, which fix our problems, at
least from a theoretical perspective6.

Suppose the points highlighted on Fig. 3.5b on the preceding page correspond to the
points (𝑣𝐴, 𝑓𝐴) and (𝑣𝐵, 𝑓𝐵) (𝑣𝐵 > 𝑣𝐴, for concreteness). Then the slope of the dashed
line is given by

− 𝑝∗ = 𝑓𝐵 − 𝑓𝐴
𝑣𝐵 − 𝑣𝐴

, (3.7)

where the sign was chosen so that we can understand this quantity as a pressure. We now
notice that, using of the Van der Waals equation of state, we may write

𝑝∗(𝑣𝐵 − 𝑣𝐴) = 𝑓𝐴 − 𝑓𝐵, (3.8a)
5I picked 𝑇 = 0.84575𝑇𝑐, where 𝑇𝑐, known as the critical temperature, is given by 𝑇𝑐 = 8𝑎

27𝑏𝑘𝐵
. This

choice is simply because this isotherm displays quite clearly the problematic features we’re interested in.
6For a different point of view on justifying the Maxwell construction, see the text by Kardar (2007b,

Sec. 5.4).
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𝑣𝑐
𝑣

0

𝑝𝑐

𝑝

𝑇 = 0.84575𝑇𝑐

(a) Plot of the pressure against specific volume for the chosen isotherm. Notice there is an unstable region
with ( 𝜕𝑝

𝜕𝑣 )
𝑇

> 0. The dashed line corresponds to the dashed line shown in the Helmholtz free energy
plot.

𝑣𝑐
𝑣

𝑓

𝑇 = 0.84575𝑇𝑐

(b) Plot of the Helmholtz free energy against specific volume for the chosen isotherm. Notice there is an
unstable region where the function fails to be convex. To fix it, we might replace that piece of the
function by the dashed line.

Figure 3.5: Pressure and Helmholtz free energy of the Van der Waals gas for the isotherm
𝑇 = 0.84575𝑇𝑐, where 𝑇𝑐 = 8𝑎

27𝑏𝑘𝐵
is known as the critical temperature.
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= ∫
𝑣𝐵

𝑣𝐴

𝑝(𝑣) d𝑣 , (3.8b)

which can be rewritten as
∫

𝑣𝐵

𝑣𝐴

𝑝(𝑣) − 𝑝∗ d𝑣 . (3.9)

Notice this equation corresponds to imposing that the areas in between the isotherm and
the dashed line on Fig. 3.5a on the previous page are the same. This fact can be exploited
to actually perform the Maxwell construction.

Before we actually discuss how to perform the construction, it is useful to find the
Van der Waals’ gas critical point, so we can express the quantities as ratios between the
physical values and the critical values. The critical point must satisfy three criteria:

• it solves the Van der Waals equation of state,

𝑝𝑐 = 𝑘𝐵𝑇𝑐
𝑣𝑐 − 𝑏

− 𝑎
𝑣2

𝑐
; (3.10)

• it satisfies
(𝜕𝑝

𝜕𝑣
)

𝑇
= − 𝑘𝐵𝑇𝑐

(𝑣𝑐 − 𝑏)2 + 2𝑎
𝑣3

𝑐
= 0, (3.11)

since it is the limit of corrected isotherms which are simply plateaus;

• it satisfies
(𝜕2𝑝

𝜕𝑣2 )
𝑇

= 2𝑘𝐵𝑇𝑐
(𝑣𝑐 − 𝑏)3 − 6𝑎

𝑣4
𝑐

= 0, (3.12)

due to the requirement of thermodynamic stability (see Kardar 2007b, Sec. 1.9).

These are three equations for three unknowns, 𝑇𝑐, 𝑝𝑐, and 𝑣𝑐. Solving them is an algebraic
exercise, and at the end of it one gets to

𝑝𝑐 = 𝑎
27𝑏2 , 𝑇𝑐 = 8𝑎

27𝑏𝑘𝐵
, and 𝑣𝑐 = 3𝑏. (3.13)

If we now define
̃𝑝 ≡ 𝑝

𝑝𝑐
, ̃𝑇 ≡ 𝑇

𝑇𝑐
, and ̃𝑣 ≡ 𝑣

𝑣𝑐
, (3.14)

one can show that the Van der Waals equation reduces to

̃𝑝 = 8 ̃𝑇
3 ̃𝑣 − 1

− 3
̃𝑣2 . (3.15)

The equal area imposition is now written as

∫
̃𝑣𝑔

̃𝑣𝑙

̃𝑝( ̃𝑣) d𝑣 = ̃𝑝𝑙( ̃𝑣𝑔 − ̃𝑣𝑙), (3.16)
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where ̃𝑣𝑙 is the liquid phase volume, ̃𝑣𝑔 is the gas phase volume, and ̃𝑝𝑙 = ̃𝑝𝑔 is the pressure
at both the liquid and gas phases (since it is constant during the phase transition). If we
compute the integral and impose the Van der Waals equation at both the liquid and gas
phases (in addition to ̃𝑝𝑙 = ̃𝑝𝑔), we get to the system of equations

⎧
{
{
{
{
⎨
{
{
{
{
⎩

log(3 ̃𝑣𝑔 − 1) + 9
4 ̃𝑇 ̃𝑣𝑔

−
3 ̃𝑣𝑔

3 ̃𝑣𝑔 − 1
= log(3 ̃𝑣𝑙 − 1) + 9

4 ̃𝑇 ̃𝑣𝑙
− 3 ̃𝑣𝑙

3 ̃𝑣𝑙 − 1
,

̃𝑝𝑙 = 8 ̃𝑇
3 ̃𝑣𝑙 − 1

− 3
̃𝑣2
𝑙

,

̃𝑝𝑙 = 8 ̃𝑇
3 ̃𝑣𝑔 − 1

− 3
̃𝑣2
𝑔

.

(3.17)

Given ̃𝑇, one can then—at least in principle—solve for ̃𝑝𝑙, ̃𝑣𝑙, ̃𝑣𝑔. In practice, numerical
methods might be needed. In the figures throughout this text, I have been using a Python
code based on the one by christian (2016).

We should point out clearly what is the idea behind the Maxwell construction: the Van
der Waals gas was derived as an approximate equation of state for a gas of particles that
behave as hard spheres with a small attractive potential. Being an approximation, the
equation does not need to work at every situation. The Maxwell construction is a manner
of obtaining a better approximation for the isotherms of a real fluid in a situation in which
the Van der Waals equation is no longer working. In other words, it is a manner of using
the failure of the Van der Waals equation to obtain a better description. Furthermore,
while this construction can also be used for other equations of state, it will usually not be
available on nonequilibrium thermodynamics.

It is also worth noticing that, as one can show, for temperatures below ̃𝑇 = 0.843 75
the Van der Waals equation will predict negative pressures.

Second-Order Phase Transitions

To get a different grasp of how convexity has to do with the breakdown of the Van der
Waals equation and to build a bridge with second-order phase transitions, it is interesting
for us consider how one would usually compute the Gibbs free energy7. By definition,
the Gibbs free energy is the Legendre transformation of the Helmholtz free energy with
respect to volume and pressure, meaning it is given by

𝑔(𝑇 , 𝑝) = inf
𝑣

{𝑓(𝑇 , 𝑣) + 𝑝𝑣}. (3.18)

We’re focusing here at only the intensive quantities, but we could also consider their
extensive versions and just hold 𝑁 fixed.

For fixed values of 𝑇 and 𝑝, how does the functions 𝑓(𝑇 , 𝑣) + 𝑝𝑣 look like as a function
of 𝑣? The answer to this question will let us know what is the actual physical volume

7This section is inspired mostly by Prof. Fiore’s lecture and slideshow, but also draws a bit from the
book by Callen (1985, Chap. 10). More information on convex functions and Legendre transformations in
the context of Thermodynamics can be found on the book by Wreszinski (2018).
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of the system at fixed temperature and pressure, for it will be that which minimizes
𝑓(𝑇 , 𝑣) + 𝑝𝑣. The values of 𝑇 and 𝑝 that should be the most interesting are those on
the coexistence region, depicted as a solid line on the diagram of Fig. 3.6 on page 79.
We’d also be interested in following the coexistence region after it no longer exists, so we
extrapolated the curve on Fig. 3.6 on the next page with a dashed line.

Here’s the algorithm for drawing Fig. 3.6 on the following page: for each fixed value of
𝑇 you want to plot, use the Maxwell construction to find the coexistence pressure. Draw
it on the graph. After you have drawn the solid line, pick some points on it (I used fifteen)
and use them to fit a convenient model (I used 𝑐0 + 𝑐1 exp(𝑐2𝑇)). With this model, you
can plot the dashed line8.

0.84375𝑇𝑐 𝑇𝑐
𝑇

𝑝𝑐

𝑝

liquid

gas

Figure 3.6: Pressure and temperature phase diagram for the Van der Waals gas. For 𝑇 ≤
0.84375𝑇𝑐 the equation of state predicts negative pressures, so it was disregarded
in that region. The solid line corresponds to the coexistence region, and the black
point in the middle is the critical point. The dashed line is an extrapolation of
the coexistence line made by fitting the curve 𝑐0 + 𝑐1 exp(𝑐2𝑇) to points from the
coexistence line, so we can later check the behavior of the gas as we “follow the
coexistence line” in the region without phase transitions. We also highlight some
points of interest that we’ll be analyzing in more detail.

From Eq. (3.6) on page 74 we already know the expression for the Helmholtz free
energy of the Van der Waals gas without the Maxwell correction. Hence, we know that

𝑓(𝑇 , 𝑣) + 𝑝𝑣 = −𝑘𝐵𝑇 log(𝑣 − 𝑏) − 𝑎
𝑣

+ 𝑓0(𝑇 ) + 𝑝𝑉 . (3.19)

We do not know yet the function 𝑓0(𝑇 ), but we’ll just ignore it. We are interested in the
behavior as a function of volume, so we can live with isotherm plots that could need to

8To be fair, I did use the fitted model to plot the solid line as well, since plotting a curve is faster
than calculating all of the points using numerical root-finding algorithms. Still, the principle is the same.
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be shifted up and own due to an extra constant. The resulting plots of Eq. (3.19) for
the points we highlighted on Fig. 3.6 on the next page are shown on Figs. 3.7 to 3.9 on
pages 79–80

𝑣𝑐
𝑣

𝑓
+

𝑝𝑣

𝑇 /𝑇𝑐

0.85
0.90
0.95
1.00
1.05
1.10

Figure 3.7: Plots of the function 𝑓(𝑇 , 𝑣) + 𝑝𝑣 as a function of 𝑣 for the points highlighted on
Fig. 3.6 on page 79 that lie on the coexistence line.
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𝑓
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𝑝𝑣

𝑇 /𝑇𝑐
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0.90
0.95
1.00
1.05
1.10

Figure 3.8: Plots of the function 𝑓(𝑇 , 𝑣) + 𝑝𝑣 as a function of 𝑣 for the points highlighted on
Fig. 3.6 on page 79 that lie above the coexistence line.

The first thing we notice on Figs. 3.7 to 3.9 on pages 79–80 is the existence of two
minima on the curves with 𝑇 < 𝑇𝑐. Under constant temperature and pressure, the Gibbs
free energy is minimized. Hence, what we see when both minima are the same (the case
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Figure 3.9: Plots of the function 𝑓(𝑇 , 𝑣) + 𝑝𝑣 as a function of 𝑣 for the points highlighted on
Fig. 3.6 on page 79 that lie below the coexistence line.

of Fig. 3.7 on the preceding page) is exactly that there are two possible phases. Hence, on
the coexistence line, we see the existence of two phases. Below and above the coexistence
line, we see that one of the minima becomes a global minimum, and hence there is a single
phase.

Furthermore, notice that if we keep the temperature constant and slowly increase the
pressure with the goal of crossing the coexistence line, we’ll see a discontinuous phase
transition. The global minimum discontinuously changes from a value to another.

However, notice now what happens for temperatures 𝑇 ≥ 𝑇𝑐. In this case, the
transition between different values of the global minimum is continuous. For 𝑇 > 𝑇𝑐, this
is because there is always a single minimum. For 𝑇 = 𝑇𝑐, we have a limiting, or critical,
behavior in which the transition starts to be continuous. Hence, in the critical point
we no longer have a first-order, discontinuous phase transition, but rather a continuous
transition. The two minima present at 𝑇 < 𝑇𝑐 merge into one exactly at the critical
temperature.

Another way of seeing this is by looking at the isotherms as expressions for the volume
as a function of pressure. These plots are shown for the Van der Waals gas on Fig. 3.10 on
the next page. At the critical temperature, the curve for the volume becomes continuous,
but it has an infinite derivative at the critical point.

In summary, for first-order phase transitions we’ll find discontinuities on the first
derivatives of the Gibbs free energy. This means we find discontinuities on quantities such
as volume, entropy, of the magnetization of a ferromagnet.

For second-order phase transitions, we’ll find divergences on the second derivatives
of the Gibbs free energy. These are, for example, the specific heat, or the isothermal
compressibility.

– 80 –



𝑝𝑐
𝑝

𝑉𝑐

𝑉

𝑇 /𝑇𝑐

0.85
0.90
0.95
1.00
1.05
1.10

Figure 3.10: Volume as a function of pressure for a few of the Van der Waals isotherms. At the
critical temperature, the curve becomes continuous, but it has an infinite derivative
at the critical point.

Order Parameters

An alternative way of characterizing a phase transition is in terms of a so-called order
parameter. This is a parameter 𝜓 that assumes different values on each phase, allowing
us to distinguish them. Often we may want to choose an order parameter in such a way
that is vanishes in one of the phases, but not on the other. Furthermore, on some cases,
we might need to use a vector or a tensor as an order parameter.

For the liquid-gas transition, possible choices of order parameters are 𝑣𝑙 −𝑣𝑐 (the liquid
volume minus the critical volume), 𝑣𝑔 − 𝑣𝑐 (the gas volume minus the critical volume),
and 𝑣𝑔 − 𝑣𝑙. Alternatively, we could also work with densities 𝜌 = 1

𝑣 instead of the specific
volumes. For a magnetic system, as we shall see, the spontaneous magnetization plays
the role of an order parameter.

It is then possible to discuss phase transitions in terms of their order parameters. If
the parameter vanishes (dis)continuously, the transition is (dis)continuous. To work with
order parameter is always interesting in out-of-equilibrium problems, when we might not
be able to find a thermodynamic potential, but can still find order parameters.
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Critical Exponents

Since we characterized phase transitions in terms of discontinuities and divergences of
the derivatives of the Gibbs free energy, one might wonder on whether these singularities
occur on all derivatives, or only on some of them. For example, is it possible to have a
system with discontinuous volume, but continuous entropy? The answer to this question
is in principle “no”, but it actually boils down to the so-called critical exponents.

Close to the critical point, the thermodynamic quantities will vanish or diverge
according to a power law. More specifically, they will diverge or vanish following some
power of the quantity

𝑡 ≡ 𝑇 − 𝑇𝑐
𝑇𝑐

, (3.20)

where 𝑇𝑐 is the critical temperature. For a general quantity 𝐹(𝑡), the critical exponent is
defined by9

𝜆 = lim
𝑡→0

log |𝐹 (𝑡)|
log |𝑡|

. (3.21)

The reason for this algebraic behavior is subtle, but it has to do with the inexistence of
a characteristic length at the critical point, for in criticality, clusters of all sizes can form.
We’ll discuss this later, when discussing the critical exponent related to the correlation
length. Notice that critical exponents are defined only on the critical point, not at
coexistence regions.

Let us then follow Kardar (2007a, Sec. 1.4) to discuss the most encountered critical
exponents.

The first interesting case is that of the order parameter, which will typically vanish on
one of the phases, but not on the other. Hence, it has the behavior

𝜓 ∝ {
0, for 𝑇 > 𝑇𝑐,
|𝑡|𝛽, for 𝑇 < 𝑇𝑐,

(3.22)

or the other way around (i.e., exchanging the > and < signs).
For concreteness, this could be, for example, the spontaneuous magnetization of a

magnetic system. For high temperatures, the material behaves as a paramagnet, and there
is no spontaneuous magnetization. For low temperatures, the material is ferromagnetic and
does have a non-vanishing spontaneous magnetization. The way in which this spontaneous
magnetization vanishes as one increases the temperature close to the critical point is
described by the critical exponent 𝛽. Similarly, for a liquid-gas transition, 𝜌𝑔 − 𝜌𝑙, 𝜌𝑔 − 𝜌𝑐,
and 𝜌𝑙 − 𝜌𝑐 also behave according to 𝛽. See Fig. 3.11a on page 84.

If we now hold the temperature of a magnetic system fixed at the critical temperature
and consider slight deviations of an external magnetic field from zero, the magnetization

9Eq. (3.21) on the following page is the definition given by Prof. Fiore. In some situations, however,
we might be interested in critical exponents when some quantity other than temperature is being varied.
Furthermore, 𝜆 = 0 might lead to less information than desired. Reichl (2016, Sec. 4.9.1) discusses
situations such as these and admits more general definitions (in addition to Eq. (3.21)).
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will also vanish for external field 𝐻 → 0. This behavior is also described by a critical
exponent, 𝛿, according to

𝑚(𝑇 = 𝑇𝑐, 𝐻) ∝ 𝐻 1
𝛿 . (3.23)

For a liquid-gas system, this critical exponent will yield how the density difference vanishes
with variations of pressure, and hence it is leads us to understanding how to draw the
critical isotherm on Fig. 3.2 on page 72. See Fig. 3.11b on the following page.

Other important thermodynamic functions are the response functions, which exhibit
the clear response of the system to external perturbations. These are, for example, the
(divergent) isothermal compressibility of a liquid-gas system or the magnetic susceptibility
of a magnetic system. For this cases, we write

𝜒±(𝑇 , ℎ = 0) ∝ |𝑡|−𝛾± , (3.24)

where the ± signs correspond to whether we are approaching the critical point from high
or low temperatures. While 𝛾+ and 𝛾− do not need to be equal, in most cases they are
indeed. See Fig. 3.11c on the next page.

The response function associated with temperature is the specific heat, and it deserves
a critical exponent of its own, 𝛼. We have

𝑐±(𝑇 , ℎ = 0) ∝ |𝑡|−𝛼± . (3.25)

Depending on the signs of the amplitudes of the specific heat on each sign (i.e., depending
on the signs of 𝐶±, where 𝑐± = 𝐶±|𝑡|−𝛼±), there might or not be a cusp in the plot for 𝑐
when 𝛼 < 0. See Figs. 3.11d and 3.11e on the following page.

As mentioned earlier, critical behavior is related to the divergence of correlation
lenghts at the critical temperature. It is interesting to get a better understanding of this
and to assign a critical exponent to this divergence, so let us consider it as well. For
concreteness, let us consider as an example a magnetic system, whose partition function
is given generically by

𝑍(𝑇 , 𝐻) = ∑
microstates

𝑒−𝛽ℋ0+𝛽𝐻𝑀, (3.26)

where 𝑀 is the magnetization of each state, ℋ0 is the Hamiltonian in each state, and
𝐻 is the external magnetic field. One can show (see Kardar 2007a, Sec. 1.4) that the
expected value of the magnetization is

⟨𝑀⟩ = 𝜕 log 𝑍
𝜕𝛽𝐻

(3.27)

and that a consequence of this is that the susceptibility is

𝜒 = 1
𝑘𝐵𝑇

(⟨𝑀2⟩ − ⟨𝑀⟩2). (3.28)

However, the total magnetization can be written as a sum over the contributions from
each part of the magnet, i.e.,

𝑀 = ∫ 𝑚(r) d3𝑟 . (3.29)
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Figure 3.11: Examples of singular behavior near the critical point for a magnetic system. The
graphs for the magnetization 𝑚 and magnetic susceptibility 𝜒 as functions of
temperature 𝑇 anfd external magnetic field 𝐻 correspond to the actual behavior
of the Curie–Weiss model for a ferromagnet. The graphs for specific heat 𝑐 are
just examples of possible behaviors. Notice that, for negative 𝛼, the signs of the
amplitudes determine whether there is a cusp or not.

We can then write the susceptibility as

𝜒 = 𝛽 ∫ ⟨𝑚(r1)𝑚(r2)⟩ − ⟨𝑚(r1)⟩ ⟨𝑚(r2)⟩ d3𝑟1 d3𝑟2 . (3.30)

For a homogeneous system, we have translational symmetry, which means ⟨𝑚(r)⟩ = 𝑚
is a constant and ⟨𝑚(r1)𝑚(r2)⟩ has the form ⟨𝑚(r1)𝑚(r2)⟩ = 𝐺(r1 − r2), meaning it
depends only on the separation of the two points. Therefore, the connected correlation
function

⟨𝑚(r1)𝑚(r2)⟩𝑐 ≡ ⟨𝑚(r1)𝑚(r2)⟩ − ⟨𝑚(r1)⟩ ⟨𝑚(r2)⟩ (3.31)

depends only on the separation of the two points. Let us then write

𝜒 = 𝛽 ∫ ⟨𝑚(r1)𝑚(r2)⟩ − ⟨𝑚(r1)⟩ ⟨𝑚(r2)⟩ d3𝑟1 d3𝑟2 , (3.32a)
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= 𝛽 ∫ ⟨𝑚(r1)𝑚(r2)⟩𝑐 d3𝑟1 d3𝑟2 , (3.32b)

= 𝛽 ∫ ⟨𝑚(r1 − r2)𝑚(0)⟩𝑐 d3𝑟1 d3𝑟2 , (3.32c)

= 𝛽 ∫ ⟨𝑚(r)𝑚(0)⟩𝑐 d3𝑟 d3𝑅 , (3.32d)

= 𝛽𝑉 ∫ ⟨𝑚(r)𝑚(0)⟩𝑐 d3𝑟 , (3.32e)

where we defined r = r1 − r2 and R = r1 − r2 to perform the integration.
Eq. (3.32) on the next page exhibits how a bulk response function (the susceptibility)

can depend on microscopic correlations. These correlation functions typically decay for
distances larger than a correlation length 𝜉, often exponentially. These correlations can
be probed experimentally: for the phenomenon of critical opalescence mentioned on p. 71,
the correlations much be at a length scale comparable to the wavelength of light, which is
much larger than the typical atomic distance.

If 𝑔 is a typical value for the connected correlation function for distances ‖r‖ < 𝜉,
Eq. (3.32) implies

𝑘𝐵𝑇 𝜒
𝑉

< 𝑔𝜉3, (3.33)

and hence the divergence of the susceptibility ensures the correlation function must
diverge as well, explaining, for example, why we observe critical opalescence. The critical
exponents associated with the divergence of the correlation length are 𝜈±, defined through

𝜉±(𝑇 , ℎ = 0) ∝ |𝑡|−𝜈± . (3.34)

Universality Classes

A remarkable fact we’ll notice in the following discussions is that many different physical
systems describing completely different Physics have the same sets of critical exponents.
The reason for that is that the critical exponents don’t really depend on the details of
the system, but rather on fairly general properties, such as dimensionality, symmetries,
interaction ranges, and similar features.

A notable example we’ll consider is that the Van der Waals gas and the Curie–Weiss
model for a ferromagnet present the same set of critical exponents. In other words, they
belong to the same universality class.

An example of universality is provided by the experimental data collected by Guggen-
heim (1945, Fig. 2) and also displayed on the book by Salinas (reproduced on 2001, Fig.
12.3), which shows how the densities of different gases all behave close to the critical point
with a critical exponent 𝛽 ≈ 1

3 . This means the Van der Waals gas fails to describe the
behavior near the critical point appropriately, since it predicts 𝛽 = 1

2 , as we shall see. Cross reference
A modern approach to understanding these universality classes is in terms of the

so-called renormalization group, discussed, e.g., in the texts by Kardar (2007a, Sec. 4.4
and 4.5), Pathria and Beale (2022, Chap. 14), Salinas (2001, Chap. 14), and Zinn-Justin
(2007).
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3.2 Curie–Weiss Model for a Ferromagnet

At this point, it is interesting for us to pick a more concrete model to do calculations
with. While discussing the main notions behind phase transitions, we went back and forth
between fluids and ferromagnetic systems because while fluids are more familiar when it
comes to phenomenology, the theory of ferromagnetic systems can often be easier to deal
with due to the presence of symmetries.

Phenomenology of Ferromagnetism

Let us begin by discussing the phenomenology of ferromagnetism. We’ll introduce an
ad hoc equation that will be adequate to describe a ferromagnet, and which later we’ll
derive from a statistical model on Section 3.4. Some familiarity with the basic notions
concerning magnetic materials will be assumed10, and more information on this theme
can be found on books on Electromagnetism, such as Griffiths (2017, Chap. 6), Wald
(2022, Sec. 4.4), and Zangwill (2013, Chap. 13).

Using the canonical ensemble, one can show that a model for an ideal paramagnet of
spin 1

2 obeys the equation (Kardar 2007b, Eq. (4.97); Salinas 2001, Eq. (5.36))

𝑚 = 𝜇0 tanh(𝜇0𝐻
𝑘𝐵𝑇

), (3.35)

where 𝑚 is the magnetization per site. In this case, we note that 𝐻 → 0 leads to 𝑚 → 0.
However, there are materials that behave as ferromagnets at low temperatures, but as

paramagnets at high temperatures. How could we describe this sort of behavior?
A possibility is to make an ad hoc modification of Eq. (3.35) on page 87 and write11

𝑚 = tanh(𝛽𝜆𝑚 + 𝛽𝐻). (3.36)

The phenomenological justification for this equation, known as the Curie–Weiss equation,
is that the ions themselves present in the magnet have a magnetic field, and each of them
will interact with the fields of ions close to them. This interaction with nearest neighbors
should then lead to an effective mean field proportional to the local magnetization. For
this, this is an ad hoc choice, but as mentioned before we’ll justify Eq. (3.36) with a
statistical model on Section 3.4.

We can solve for 𝐻 on Eq. (3.36) and plot the resulting equation. One can see that

𝐻 = 1
𝛽

(artanh 𝑚 − 𝛽𝜆𝑚). (3.37)

10Here’s a lightning nomenclature summary: diamagnetic materials have negative susceptibility and
hence their magnetization is anti-aligned with an external magnetic field H, paramagnetic materials have
positive susceptibility and their magnetization is aligned with H, ferromagnetic materials have permanent
magnetization.

11In going from Eq. (3.35) to Eq. (3.36) we changed the meaning of 𝑚. On Eq. (3.35) it is simply the
magnetization per site, bu on Eq. (3.36) it is the dimensionless magnetization per site, meaning a division
by 𝜇0 is understood. A similar comment is in place for 𝐻. Another way of thinking would be simply that
we are working in units with 𝜇0 = 1.
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(a) Isotherms of the Curie–Weiss equation. Notice the “handles” on isotherms with temperature lower
than the critical temperature 𝑘𝐵𝑇𝑐 = 𝜆.
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(b) Isotherms of the Curie–Weiss equation. The “handles” of low-temperature isotherms disappear exactly
at the critical temperature.

Figure 3.12: Isotherms of the Curie–Weiss equation. The “handles” occurring for low-temperature
signal a phase transition, just as with the Van der Waals.
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From Fig. 3.12b on the following page we can anticipate that 𝑚(𝐻) has a divergent
derivative at 𝐻 = 0. However, the susceptibility is related to 𝜕𝑚

𝜕𝐻 , and hence we can see it
will blow up as well.

Notice the handles on Fig. 3.12 on the next page: just as in the Van der Waals gas,
they are signaling a failure of the mean field approach and should be dealt with by means
of the Maxwell construction. Another way of seeing this is by building the Helmholtz free
energy of the system (Salinas 2001, Sec. 12.2). The dimensionless magnetization satisfies

𝑚 = −( 𝜕𝑔
𝜕𝐻

)
𝑇
, (3.38)

where 𝑔 plays the role of Gibbs free energy per site. Hence, we can define the magnetic
Helmholtz free energy per site as a Legendre transformation and get

𝐻 = ( 𝜕𝑓
𝜕𝑚

)
𝑇
. (3.39)

Hence, for the Curie–Weiss model,

𝑓(𝑇 , 𝑚) = 1
𝛽

(∫ artanh(𝑚) d𝑚 − 𝛽𝜆
2

𝑚2) + 𝑓0(𝑇 ), (3.40a)

= 1
𝛽

(𝑚 artanh 𝑚 + 1
2

log(1 − 𝑚2) − 𝛽𝜆
2

𝑚2) + 𝑓0(𝑇 ), (3.40b)

where 𝑓0(𝑇 ) is some unknown function. Plotting the Helmholtz free energy for different
isotherms leads us to Fig. 3.13 on page 89. Notice how the Helmholtz free energy fails
to be convex for the low-temperature isotherms. Furthermore, to recover the Gibbs free
energy we’d do

𝑔(𝑇 , 𝐻) = inf
𝑚

{𝑓(𝑇 , 𝑚) − 𝐻𝑚}, (3.41)

but at 𝐻 = 0 this means
𝑔(𝑇 , 𝐻 = 0) = inf

𝑚
{𝑓(𝑇 , 𝑚)}, (3.42)

and hence the presence of two minima at low-temperature isotherms on Fig. 3.13 signals
two possible phases.

There is, however, something different from the Van der Waals case: we now have a
𝐻 → −𝐻 symmetry, for the system treats equally magnetic fields in either direction. This
means the constant field plateaus of the Maxwell construction will always be at 𝐻 = 0,
making this model much easier to deal with. At 𝐻 = 0 and low-temperatures, we’ll
have coexistence of two ferromagnetic phases (𝑚 < 0 and 𝑚 > 0), but the coexistence
vanishes at the critical temperature, 𝛽𝑐𝜆 = 1. The isotherms are plotted on Fig. 3.14 on
the following page.

We can also take a different point of view on why there are two phases at low
temperatures and zero field. Notice that at 𝐻 = 0 the Curie–Weiss equation, Eq. (3.36)
on page 87, can be written as

𝑚 = tanh(𝛽𝜆𝑚). (3.43)
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Figure 3.13: Helmholtz free energy for the Curie–Weiss model. Notice that low-temperature
isotherms do not have a convex Helmholtz free energy. Notice also that this same
graph corresponds to 𝑓(𝑇 , 𝑚)−𝐻𝑚 at 𝐻 = 0, and hence the existence of two minima
at the same isotherm means there are two possible values of the magnetization.
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Figure 3.14: Isotherms for the Curie–Weiss model after the Maxwell construction has been
performed.
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Figure 3.15: Graphical method for finding the zeros of Eq. (3.43) on page 90. Notice that there
are three solutions for 𝛽𝜆 > 1. We know that 𝑚 = 0 is an unphysical solution
because it is a maximum of the free energy, as seen on Fig. 3.13 on page 89.

Let us find the zeros of this expression. This can be done graphically by plotting the
functions on each side of the equation. This is shown on Fig. 3.15 on the following page.
We see that there are three roots for 𝛽𝜆 > 1, but a single one (𝑚 = 0) otherwise. For
𝛽𝜆 > 1, 𝑚 = 0 is unphysical for it corresponds to a maximum of the free energy, as seen
on Fig. 3.13 on the previous page. The (physical) solutions of Eq. (3.43) as a function of
temperature are shown on Fig. 3.16 on the next page.

Critical Exponents

Let us then find the critical exponents of the Curie–Weiss model. We begin with the
temperature dependence of the order parameter, 𝛽.

Close to the critical point, the magnetization 𝑚 is small, and hence we can approximate
Eq. (3.36) on page 87 by

𝛽𝐻 + 𝛽𝜆𝑚 = artanh 𝑚, (3.44a)

=
+∞

∑
𝑛=0

𝑚2𝑛+1

2𝑛 + 1
, (3.44b)

≈ 𝑚 + 𝑚3

3
. (3.44c)

The phase transition happens at 𝐻 = 0, and hence we are left with

(𝛽𝜆 − 1)𝑚 ≈ 𝑚3

3
. (3.45)

– 90 –



0 𝑇𝑐
𝑇

0

−1

1

𝑚
(𝑇

,𝐻
=

0)

Figure 3.16: Magnetization as a function of temperature for the Curie–Weiss model. For low
temperatures, we have ferromagnetic domains, but from the critical temperature
𝑘𝐵𝑇𝑐 = 𝜆 onward the spontaneous magnetization vanishes.

One of the solutions is 𝑚 = 0, which is not interesting to us because it is not a minimum
of the free energy. The non-trivial solutions will be

𝑚2 = 3(𝛽𝜆 − 1), (3.46a)
= 3𝜆(𝛽 − 𝛽𝑐), (3.46b)

= 3 𝜆
𝑘𝐵

( 1
𝑇

− 1
𝑇𝑐

), (3.46c)

= 3 𝜆
𝑘𝐵

𝑇𝑐 − 𝑇
𝑇 𝑇𝑐

, (3.46d)

= −3 𝜆𝑡
𝑘𝐵𝑇

, (3.46e)

where we used 𝑡 as defined on Eq. (3.20) on page 82. Notice, though, that we can write

𝑚2 = −3 𝜆𝑡
𝑘𝐵

1
𝑇

, (3.46f)

= −3 𝜆𝑡
𝑘𝐵

1
𝑇𝑐 + (𝑇 − 𝑇𝑐)

, (3.46g)

= −3 𝜆𝑡
𝑘𝐵𝑇𝑐

+∞

∑
𝑛=0

(−1)𝑛𝑡𝑛, (3.46h)

≈ −3 𝜆𝑡
𝑘𝐵𝑇𝑐

, (3.46i)

= −3𝑡. (3.46j)
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Therefore, we see that

𝑚 ≈ ±
√

3(−𝑡) 1
2 , (3.47a)

(3.47b)

meaning 𝛽 = 1
2 . Later, we’ll see the Van der Waals gas shares the same critical exponent

(and the same goes for the other exponents). Notice that this expression only works for
𝑇 < 𝑇𝑐, but for 𝑇 > 𝑇𝑐 we already know 𝑚 is set to zero.

Next we work out the isothermal susceptibility, 𝜒𝑇 = (𝜕𝑚
𝜕𝐻 )

𝑇
. Since the susceptibility

doesn’t need to vanish on either side of the critical temperature, we’ll have to compute
two exponents.

We start again from

𝛽𝐻 + 𝛽𝜆𝑚 ≈ 𝑚 + 𝑚3

3
. (3.48)

We know 𝜒𝑇 = (𝜕𝑚
𝜕𝐻 )

𝑇
= ( 𝜕𝐻

𝜕𝑚)−1

𝑇
. Hence, we notice that

𝛽(𝜕𝐻
𝜕𝑚

)
𝑇

+ 𝛽𝜆 = 1 + 𝑚2, (3.49a)

𝛽𝜒−1
𝑇 + 𝛽𝜆 = 1 + 𝑚2. (3.49b)

Now we check the behavior on each side.
For 𝑇 > 𝑇𝑐, 𝑚 = 0 and we get

𝛽𝜒−1
𝑇 + 𝛽𝜆 = 1, (3.50a)
𝜒−1

𝑇 + 𝜆 = 𝑘𝐵𝑇 , (3.50b)
𝜒−1

𝑇 = 𝑘𝐵𝑇 − 𝜆, (3.50c)
= 𝑘𝐵(𝑇 − 𝑇𝑐), (3.50d)
= 𝑘𝐵𝑇𝑐𝑡, (3.50e)

𝜒𝑇 = 𝑡−1

𝑘𝐵𝑇
, (3.50f)

and hence 𝛾+ = 1. Notice the amplitude 𝐶+ = 1
𝑘𝐵𝑇 .

For 𝑇 < 𝑇𝑐, 𝑚2 = −3𝑡 and we get

𝛽𝜒−1
𝑇 + 𝛽𝜆 = 1 − 3𝑡, (3.51a)

𝛽(𝜒−1
𝑇 + 𝑘𝐵𝑇𝑐) = 1 − 3𝑡, (3.51b)

𝜒−1
𝑇 = 𝑘𝐵𝑇(1 − 3𝑡) − 𝑘𝐵𝑇𝑐, (3.51c)

= 𝑘𝐵𝑇(1 − 3𝑡) − 𝑘𝐵𝑇𝑐, (3.51d)
= 𝑡𝑘𝐵𝑇𝑐(1 − 3𝑡) + 𝑘𝐵𝑇𝑐(1 − 3𝑡) − 𝑘𝐵𝑇𝑐, (3.51e)
= 𝑡𝑘𝐵𝑇𝑐(1 − 3𝑡) − 3𝑡𝑘𝐵𝑇𝑐, (3.51f)
≈ −2𝑡𝑘𝐵𝑇𝑐, (3.51g)
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𝜒𝑇 = (−𝑡)−1

2𝑘𝐵𝑇
. (3.51h)

and hence 𝛾− = 1 as well. Notice the amplitude 𝐶− = 1
2𝑘𝐵𝑇 . We have the ratio

𝐶+
𝐶−

= 2. (3.52)

This ratio is also universal and will be found in other phase transitions, even though the
amplitudes themselves aren’t.

The computation of the specific heat will be left for the problem set. For the Curie–
Weiss model, the associated critical exponent is given by 𝛼− = 𝛼+ = 0. There is no
divergence, but rather only a jump. This is an issue of the mean field approximation.

At last, let us get the critical exponent for the dependence of the susceptibility with
the magnetic field at the critical isotherm. We have

𝛽𝑐(𝐻 + 𝜆𝑚) = 𝑚 + 𝑚3

3
, (3.53a)

𝛽𝑐𝐻 + 𝑚 = 𝑚 + 𝑚3

3
, (3.53b)

𝛽𝑐𝐻 = 𝑚3

3
, (3.53c)

and hence 𝛿 = 3.
Let us then see how these critical exponents compare to the ones measured experimen-

tally and to other magnetic models (namely, the Ising model in two and three dimensions).
The data is compiled on Table 3.1 on page 94.

Table 3.1: Critical exponents for mean-field approximations, for the Ising model in 𝑑 = 2 and in
𝑑 = 3 dimensions, and experimental data for magnetic systems (these are taken from
Pathria and Beale 2022, Tab. 12.1, who cite Stierstadt et al. 1990). This table is
based on the table by Salinas (2001, p. 260), from which the data for the Ising model
is taken. “0 (log)” means that there is a logarithmic divergence in the specific heat
instead of a discontinuity.

mean-field Ising (𝑑 = 2) Ising (𝑑 = 3) experiment
𝛼+,𝛼− 0 0 (log) ≈ 1/8 0.0–0.2

𝛽 1/2 1/8 ≈ 5/16 0.30–0.36
𝛾+ 1 7/4 ≈ 5/4 1.2–1.4
𝛾− 1 7/4 ≈ 5/4 1.0–1.2
𝛿 3 15 ≈ 5 4.2–4.8

The Ising model is a lattice model for a ferromagnet that considers only next-neighbors
interactions. Hence, a way of understanding why the 𝑑 = 3 results are closer to the
mean-field approximation (a path to which is to consider that all sites interact with all
sites) is by noticing that in higher dimensions one has more next-neighbors than in lower
dimensions. Namely, in 𝑑 = 2 there are four next-neighbors, while in 𝑑 = 3 there are six.
Of course, this is not a proof, just a way of getting more intuition.
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3.3 Landau’s Phenomenological Theory

We can recover the free energy from the order parameter. This is interesting not only for
us to later study phase coexistence, but also in the study of Landau’s phenomenological Cross reference
theory of phase transitions. Now, we’ll obtain an expansion for the free energy in terms
of the order parameter both for the Curie–Weiss model and for the Van der Waals model,
so we can work first with simple examples and build our way up.

Curie–Weiss Model

In terms of the Gibbs free energy per site 𝑔(𝑇 , 𝐻), we can write

𝑚(𝑇 , 𝐻) = −( 𝜕𝑔
𝜕𝐻

)
𝑇
. (3.54)

We can then define the Helmholtz free energy 𝑓(𝑇 , 𝑚) of the magnetic system as the
Legendre transform of 𝑔(𝑇 , 𝐻) and hence get

𝐻 = ( 𝜕𝑓
𝜕𝑚

)
𝑇
, (3.55)

which can be solved to get the Helmholtz free energy, as we did on Eq. (3.40) on page 89.
This was useful back then for us to find the phases of the system (and, performing the
Maxwell construction, we can also see the coexistence regions).

This time, our interest is more focused on foreshadowing Landau’s phenomenological
theory, so we’ll take a different path and write the free energy in a series expansion. From
Eq. (3.40) on page 89 one can show that

𝑓(𝑇 , 𝑚) = 𝑓0(𝑇 ) + 1
2𝛽

(1 − 𝛽𝜆)𝑚2 + 𝑚4

12𝛽
+ 𝑚6

30𝛽
+ 𝒪(𝑚8), (3.56)

where all terms are even on 𝑚. This is a consequence of the 𝐻 → −𝐻 symmetry of the
magnetic system, and it won’t occur for the liquid-gas transition, as we’ll see soon.

The Gibbs free energy per site is recovered through the Legendre transformation

𝑔(𝑇 , 𝐻) = inf
𝑚

{𝑓(𝑇 , 𝑚) − 𝐻𝑚} ≡ inf
𝑚

{𝑔(𝑇 , 𝐻; 𝑚)}, (3.57)

where

𝑔(𝑇 , 𝐻; 𝑚) = 𝑓0(𝑇 ) − 𝐻𝑚 + 1
2𝛽

(1 − 𝛽𝜆)𝑚2 + 𝑚4

12𝛽
+ 𝑚6

30𝛽
+ 𝒪(𝑚8). (3.58)

If we hadn’t plotted Fig. 3.13 on page 89 to check for the minima, we’d be able to use
this expansion to check that for low temperatures the Gibbs free energy has two minima,
but for high temperatures it has a single one. Of course, Fig. 3.13 on page 89 was possible
this time due to the model’s simplicity.
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Van der Waals gas

Let us now perform a similar calculation for the more complicated Van der Waals gas.
We know that

𝑝 = −(𝜕𝑓
𝜕𝑣

)
𝑇
, (3.59)

and using this expression we have already obtained that the Helmholtz free energy per
particle for the Van der Waals gas is (Eq. (3.6) on page 74)

𝑓(𝑇 , 𝑣) = −𝑘𝐵𝑇 log(𝑣 − 𝑏) − 𝑎
𝑣

+ 𝑓0(𝑇 ). (3.60)

As usual, the Gibbs free energy per site is obtained with a Legendre transformation

𝑔(𝑇 , 𝑝) = inf
𝑣

{𝑓(𝑇 , 𝑣) + 𝑝𝑣} ≡ inf
𝑣

{𝑔(𝑇 , 𝑝; 𝑣)}, (3.61)

where
𝑔(𝑇 , 𝑝; 𝑣) = −𝑘𝐵𝑇 log(𝑣 − 𝑏) − 𝑎

𝑣
+ 𝑓0(𝑇 ) + 𝑝𝑣. (3.62)

Let us expand this expression in terms of an order parameter. Close to the critical
point, the volume is close to the critical volume 𝑣𝑐 = 3𝑏. Hence, let us make a Taylor
expansion of 𝑔(𝑇 , 𝑝; 𝑣) about 𝑣 = 𝑣𝑐. Or, equivalently, let us expand in terms of 𝜓 = 𝑣−𝑣𝑐.
We find that

𝑔(𝑇 , 𝑝; 𝑣) =
+∞

∑
𝑛=0

𝑔𝑛(𝑇 , 𝑝)𝜓𝑛, (3.63)

where

𝑔0 = 𝑓0(𝑇 ) + 𝑝𝑣𝑐 − 𝑘𝐵𝑇 log(𝑣𝑐 − 𝑏) − 𝑎
𝑣𝑐

, (3.64a)

𝑔1 = 𝑝 − 𝑘𝐵𝑇
𝑣𝑐 − 𝑏

+ 𝑎
𝑣2

𝑐
, (3.64b)

𝑔2 = 𝑘𝐵𝑇
2(𝑣𝑐 − 𝑏)2 − 𝑎

𝑣3
𝑐

, (3.64c)

𝑔3 = − 𝑘𝐵𝑇
3(𝑣𝑐 − 𝑏)3 + 𝑎

𝑣4
𝑐

, (3.64d)

𝑔4 = 𝑘𝐵𝑇
4(𝑣𝑐 − 𝑏)4 − 𝑎

𝑣5
𝑐

, (3.64e)

and so on. If we use the values of the critical parameters Eq. (3.13) on page 77 and define

𝑡 ≡ 𝑇 − 𝑇𝑐
𝑇𝑐

and Δ𝑝 ≡ 𝑝 − 𝑝𝑐
𝑝𝑐

, (3.65)
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then we can write

𝑔0 = 𝑓0(𝑇 ) + 3𝑏𝑝 − 𝑘𝐵𝑇 log(2𝑏) − 𝑎
3𝑏

, (3.66a)

𝑔1 = − 4𝑎
27𝑏2 𝑡 + 𝑎

27𝑏2 Δ𝑝, (3.66b)

𝑔2 = 𝑎
27𝑏3 𝑡, (3.66c)

𝑔3 = − 𝑎
81𝑏4 𝑡, (3.66d)

𝑔4 = 𝑎
1944𝑏5 + 𝑎

216𝑏5 𝑡. (3.66e)

We should compare these expressions to Eq. (3.58) on the previous page: this time,
there are odd terms. The reason is that we no longer have a symmetry, which makes the
system more complicated to deal with.

At the critical point (𝑡 = 0, Δ𝑝 = 0), we have 𝑔1 = 𝑔2 = 𝑔3 = 0, while 𝑔 > 4. Since 𝜓
is small in the critical region, the existence of a minimum is ensured at fourth order, and
hence it is possible to analyze the critical region considering only the approximation

𝑔(𝑇 , 𝑝; 𝑣) = 𝑔0 + 𝑔1𝜓 + 𝑔2𝜓2 + 𝑔3𝜓3 + 𝑔4𝜓4. (3.67)

At this point, it is convenient to make a different definition of the order parameter
with the goal of simplifying this expression. If we define a shifted parameter 𝜓′ = 𝜓 − 𝑐,
we’ll find that 𝑐 = − 𝑔3

4𝑔4
leads us to

𝑔(𝑇 , 𝑝; 𝑣) = 𝐴0 + 𝐴1𝜓′ + 𝐴2𝜓′2 + 𝐴4𝜓′4, (3.68)

with

𝐴0 = 𝑔0 − 𝑔1𝑔3
4𝑔4

+ 𝑔2𝑔2
3

16𝑔2
4

− 3𝑔4
3

256𝑔3
4

, (3.69a)

𝐴1 = 𝑔1 − 𝑔2𝑔3
2𝑔4

+ 𝑔3
3

8𝑔2
4

, (3.69b)

𝐴2 = 𝑔2 − 3𝑔2
3

8𝑔4
, (3.69c)

𝐴4 = 𝑔4. (3.69d)

Notice 𝐴1 and 𝐴2 vanish at the critical point, while 𝐴4 > 0. Furthermore, 𝜓′ still
vanishes at the critical point, since 𝑔3 does as well. Hence, we can also analyze the
minima of Eq. (3.68) on the following page to understand the critical behavior. Notice
this provides an example of the freedom of choice we have with the order parameter 𝜓,
since we were able to redefine it (with the constraint that it should still vanish at the
critical point).
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Landau’s Phenomenological Theory

To discuss Landau’s phenomenological theory, we’ll follow the discussions by L. D. Landau
and Lifshitz (1980, Chap. XIV), Pathria and Beale (2022, Sec. 12.9), and Salinas (2001,
Sec. 12.3). At the time this

section started
being written,
Prof. Fiore still
hadn’t covered
this theme, but
I got interested
in it.

Second-order phase transitions happen continuously. In particular, the order parameter
varies continuously until it vanishes in a (typically) high-temperature, (typically) more
symmetric phase. Since the order parameter can take arbitrarily small values close to
the critical point (this is the meaning of the phase transition being continuous), in the
vicinity of the critical point we can write the Gibbs free energy in the form

𝑔(𝑇 , 𝑝; 𝜓) = 𝑔0(𝑇 , 𝑝) + 𝑔1(𝑇 , 𝑝)𝜓 + 𝑔2(𝑇 , 𝑝)𝜓2 + 𝑔3(𝑇 , 𝑝)𝜓3 + 𝑔4(𝑇 , 𝑝)𝜓4 + ⋯ , (3.70)

where 𝜓 is the order parameter and we are neglecting higher-order contributions. Notice
that not all variables on Eq. (3.70) are on equal footing: while 𝑇 and 𝑝 (which can stand
also for, e.g., an external magnetic field, not only pressure) are chosen arbitrarily, 𝜓 is to
be obtained by minimizing 𝑔(𝑇 , 𝑝; 𝜓).

The expansion on Eq. (3.70), referred to as the Landau expansion, is similar to what
we just did for the Van der Waals gas and for the Curie–Weiss model, but it works in
far more generality, since it now applies to way more general continuous transitions12.
Furthermore, fairly general properties of Eq. (3.70) on the previous page can be obtained
in a straightforward manner:

• if 𝜓 ≠ 0 and 𝜓 = 0 correspond to phases with different symmetries, then it is
necessary13 that 𝑔1(𝑇 , 𝑝) = 0, just like we had on the Curie–Weiss model;

• 𝑔2(𝑇𝑐, 𝑝𝑐) = 0, for it must be negative when 𝜓 ≠ 0 (or there wouldn’t be minima in
the unsymmetrical phase), and it must be positive when 𝜓 = 0 (or 𝜓 = 0 would be
unstable);

• since 𝜓 = 0 should be stable at the critical point, we must have 𝑔1(𝑇𝑐, 𝑝𝑐) = 0,
𝑔3(𝑇𝑐, 𝑝𝑐) = 0, and 𝑔4(𝑇𝑐, 𝑝𝑐) > 0.

Due to the freedom in the definition of 𝜓, we can also often redefine it to get to the
form

𝑔(𝑇 , 𝑝; 𝜓) = 𝐴0(𝑇 , 𝑝) + 𝐴1(𝑇 , 𝑝)𝜓 + 𝐴2(𝑇 , 𝑝)𝜓2 + 𝜓4. (3.71)

Notice we still need to have 𝐴1(𝑇𝑐, 𝑝𝑐) = 0, and 𝐴2(𝑇𝑐, 𝑝𝑐) = 0 from stability arguments.
If we now take the derivatives of Eq. (3.71), we find

𝜕𝑔
𝜕𝜓

= 𝐴1 + 2𝐴2𝜓 + 4𝜓3, (3.72)

12But not to all of them! Salinas (2001, p. 252) mentions that the exact solution to the two-dimensional
Ising model is a famous example of a system that can’t be put in the form of the Landau expansion.

13This is essentially because a linear term will always “lift” one of the minima of the Gibbs free energy,
hence favoring one minimum over the other and spoiling the symmetry of the 𝜓 = 0 phase. For a more
detailed discussion, see the text by L. D. Landau and Lifshitz (1980, Sec. 144).
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and

𝜕2𝑔
𝜕𝜓2 = 2𝐴2 + 12𝜓2. (3.73)

Since the physical value of 𝜓 must be a minimum of the free energy, we know 𝜕𝑔
𝜕𝜓 = 0. For

the case with 𝐴1 = 0, this means either 𝜓 = 0 or 𝜓2 = −𝐴2
2 . Stability is dictated by the

second derivative. 𝜓 = 0 will be stable for 𝐴2 > 0 and 𝜓 ≠ 0 for 𝐴2 < 0.
Let us consider a system with a symmetry, so that only even powers occur on the

expression for the free energy. In this case, the most general expansion will be of the form

𝑔(𝑇 , 𝐻; 𝑚) = 𝑔0(𝑇 ) − 𝐻𝑚 + 𝐴(𝑇 )𝑚2 + 𝐵(𝑇 )𝑚4 + ⋯ , (3.74)

where we adopted the notation usual to ferromagnetic systems, which will typically present
this symmetry. Since 𝐴(𝑇𝑐) = 0 and 𝐵(𝑇𝑐) > 0, we can make an expansion about the
critical point to write

𝑓0(𝑇 ) ≈ 𝑓0(𝑇𝑐), 𝐴(𝑇 ) ≈ 𝑎(𝑇 − 𝑇𝑐)
𝑇𝑐

, 𝐵(𝑇 ) ≈ 𝑏, (3.75)

for constants 𝑎 > 0 and 𝑏 > 0. Hence, about the critical point we have

𝑔(𝑇 , 𝐻; 𝑚) = 𝑓0(𝑇𝑐) − 𝐻𝑚 + 𝑎𝑡𝑚2 + 𝑏𝑚4, (3.76)

where 𝑡 = 𝑇 −𝑇𝑐
𝑇𝑐

, as usual. Hence, at 𝐻 = 0, the stable minima of the potential occur at

𝑚2 = −𝑎𝑡
2𝑏

, (3.77)

which immediately yields the critical exponent 𝛽 = 1
2 . The remaining critical exponents

and the amplitude ratio 𝐶+/𝐶− can be computed similarly (see Pathria and Beale 2022,
Sec. 12.9).

It is interesting to notice how general the Landau theory is. We were able to obtain the
critical exponents without ever picking too many details about the system. It might seem
that the Landau phenomenology comprehends all phenomena and enclose then within a
single universality class, but that is incorrect. In fact, as pointed out by Pathria and Beale
(2022, p. 461) and Peliti (2011, pp. 155–156), the lesson is that the critical exponents are
arising from assumptions such as analyticity of the free energy (allowing us to write it as
a Taylor series), dimensionality (which in the particular cases of the Landau theory does
become irrelevant), and symmetries of the system.

Notice also that more complicated results can be signaled by the Landau phenomenol-
ogy. As pointed out by L. D. Landau and Lifshitz (1980, pp. 452–453) and Salinas (2001,
p. 253), assuming the linear term vanishes, there are two sorts of systems: those with an
identically vanishing cubic term and those whose cubic term vanishes only at the critical
point. Assuming the quadratic coefficient is 𝐴(𝑇 , 𝑝) and the cubic coefficient is 𝐶(𝑇 , 𝑝),
the case 𝐶(𝑇 , 𝑝) = 0 means the critical point is at 𝐴(𝑇𝑐, 𝑝𝑐) = 0, which is a line in a 𝑝-𝑇
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diagram. On the other hand, if 𝐶(𝑇 , 𝑝) doesn’t vanish identically, we have second-order
transitions in isolated points only, for the critical point must respect both the conditions
𝐴(𝑇𝑐, 𝑝𝑐) = 0 and 𝐶(𝑇𝑐, 𝑝𝑐) = 0.

It is curious that we do a Taylor expansion to deal with a problem that is, by its
very nature, singular. Pathria and Beale (2022, p. 461) explains that we don’t really
use a smooth expansion in the process, but technically use the Maxwell corrected free
energy. Nevertheless, since the original free energy was obtained by mean field methods,
the results still remember the mean field approximation and the critical exponents are
those of mean field theory.

A possibility to improve on the Landau phenomenology mentioned by Pathria and
Beale (2022, p. 461) is to proceed on the direction of understanding the scaling approach.
Salinas (2001, p. 254) mentions the Landau free energy behaves according to a simple
scaling law, which we shall now describe. Let 𝑔𝑠 be defined (say, for a ferromagnetic
system) through

𝑔𝑠(𝑡, 𝐻) = −𝐻𝑚 + 𝑎𝑡𝑚2 + 𝑏𝑚4, (3.78)

where 𝑚 is defined as a solution to

− 𝐻 + 2𝑎𝑡𝑚 + 4𝑏𝑚3 = 0. (3.79)

From these two equations, it can be shown that

𝑔𝑠(𝑡, 𝐻) = 𝜆𝑔𝑠(𝜆− 1
2 𝑡, 𝜆− 3

4 𝐻), (3.80)

for any 𝜆. Hence, if we pick 𝜆 such that 𝜆− 1
2 𝑡 = 1 we’ll find that

𝑔𝑠(𝑡, 𝐻) = 𝑡2𝑔𝑠(1, 𝐻
𝑡 3

2
) = 𝑡2𝐹( 𝐻

𝑡 3
2

). (3.81)

Salinas (2001, p. 254) also mentions the phenomenological scaling hypotheses can be way
more general than the Landau theory, typically assuming only the form

𝑔𝑠(𝑡, 𝐻) = 𝑡2−𝛼𝐹( 𝐻
𝑡𝛽𝛿 ), (3.82)

where 𝛼 and the product 𝛽𝛿 should be determined experimentally.

Tricritical Point

Landau’s theory also allows us to describe tricritical points. We’ll do this discussion
following Prof. Fiore’s lecture notes.

Let us assume that the free energy has the form

𝑔(𝑚) = 𝑏𝑚2 + 𝑐𝑚4 + 𝑑𝑚6, (3.83)

which is more general than the expressions we have been considering. Notice we must
have 𝑑 > 0 to avoid instabilities. Let us find its extrema. Firstly, we notice that

𝜕𝑔
𝜕𝑚

= 2𝑏𝑚 + 4𝑐𝑚3 + 6𝑑𝑚5, (3.84)
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the roots of which are

𝑚 = 0 and 𝑚2 = −𝑐 ±
√

𝑐2 − 3𝑏𝑑
3𝑑

. (3.85)

To study the stability of these solutions, we’ll need to consider the second-derivative of
the free energy,

𝜕2𝑔
𝜕𝑚2 = 2𝑏 + 12𝑐𝑚2 + 30𝑑𝑚4. (3.86)

With it in mind, we then separately treat each one of the possible combinations of signs of
𝑏 and 𝑐. Instead of performing the algebraic manipulations, we’ll simply quote the results.

For 𝑏 < 0 and any value of 𝑐, 𝑚 = 0 is an unstable solution. There are two stable
solutions, given by

𝑚2 = −𝑐 +
√

𝑐2 − 3𝑏𝑑
3𝑑

. (3.87)

For 𝑏 = 0 and 𝑐 < 0, 𝑚 = 0 is an unstable solution. There are two stable solutions,
given by

𝑚2 = −2𝑐
3𝑑

. (3.88)

For 𝑏 ≥ 0 and 𝑐 ≥ 0, 𝑚 = 0 is stable and it is the only solution.
For 𝑏 > 0 and 𝑐 < 0, 𝑚 = 0 is stable. There are two other stable solutions, given by

𝑚2 = −𝑐 +
√

𝑐2 − 3𝑏𝑑
3𝑑

, (3.89)

and there are two unstable solutions,

𝑚2 = −𝑐 −
√

𝑐2 − 3𝑏𝑑
3𝑑

. (3.90)

For 𝑏 > 0 and 𝑐 < 0 we’d also like to know whether the extra stable solutions are
above, below, or have the same energy as 𝑚 = 0. This can be done by simply checking
the solutions for 𝑔(𝑚) = 0. 𝑔(0) = 0, so we only need to find the sign of the remaining
solutions. If 𝑚 = 0 is the global minimum, then it is the only root of 𝑔(𝑚). If it is only
a local minimum, then there are other solutions. Hence, we notice that the non-trivial
roots of 𝑔(𝑚) are

𝑔(𝑚) = 0, (3.91a)
𝑏𝑚2 + 𝑐𝑚4 + 𝑑𝑚6 = 0, (3.91b)

𝑏 + 𝑐𝑚2 + 𝑑𝑚4 = 0, (3.91c)

𝑚2 = −𝑐 ±
√

𝑐2 − 4𝑏𝑑
2𝑑

. (3.91d)

If 𝑐2 = 4𝑏𝑑, then we have two nontrivial points in which 𝑔(𝑚) = 0, which are going to
precisely coincide with the minima of 𝑔. If 𝑐2 < 4𝑏𝑑, then 𝑚 = 0 is the global minimum.
If 𝑐2 > 4𝑏𝑑, the nontrivial minima are the global minima.
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Notice then that for 𝑏 > 0 and 𝑐 < 0 with 𝑐2 = 4𝑏𝑑 we have the coexistence of three
phases. As we increase 𝑏, we’ll eventually reach 𝑐2 = 3𝑏𝑑, at which point a discontinuous
phase transition is taking place. The system will discontinuously jump from the nontrivial
solutions, which are no longer minima, to 𝑚 = 0.

For 𝑐 > 0 the behavior is different. Instead, the transition as we increase 𝑏 is continuous,
with the stable minima “merging” at 𝑚 = 0.

The qualitative behavior of 𝑔(𝑚) for different values of 𝑏 and 𝑐 is sketched on Fig. 3.17
on page 102.

𝑏

𝑐

𝑐 = −
√

4𝑏𝑑
𝑐 = −

√
3𝑏𝑑

Figure 3.17: General behavior of 𝑔(𝑚), as defined on Eq. (3.83) on page 100, for different
combinations of signs of 𝑏 and 𝑐.
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3.4 The Ising Model

To obtain a microscopic model of ferromagnetism, we’ll consider a lattice made of 𝑁 spins
with magnetic dipole moments 𝜇, each with strength 𝑔𝜇𝐵√𝑗(𝑗 + 1) and degeneracy 2𝑗 +1.
The atoms in the lattice are allowed to interact with their 𝑞 nearest neighbors and are
under the effect of a magnetic field H. For certain dimensions, this model will lead to
a ferromagnetic-paramagnetic phase transition at a critical temperature 𝑇𝑐. Most such
systems will have a 𝑚(0, 𝑇 ) curve better fitted for the choice 𝑗 = 1

2 , which is another way
of saying ferromagnetism is related to the electron’s spin, rather than to orbital angular
momentum.

Exchange Interaction

The interaction actually responsible for ferromagnetism is known as “exchange interaction”,
and we shall discuss it in the following. Briefly, when electrons are close to each other,
the Pauli exclusion principle keeps their spins from pointing in the same direction, but
they can align if they are a bit further apart. Therefore, spatial separation affects the
possible electrostatic interactions and, as a consequence, the possible spin orientations.

To see this mathematically, let us notice that, since electrons are fermions, the possible
wavefunctions for a pair of electrons are of the form

𝜓1(r1, 𝑠1; r2, 𝑠2) = 𝜙𝑆(r1, r2)𝜒𝐴(𝑠1, 𝑠2) (3.92)

or of the form

𝜓2(r1, 𝑠1; r2, 𝑠2) = 𝜙𝐴(r1, r2)𝜒𝑆(𝑠1, 𝑠2), (3.93)

where 𝜙 stands for the spatial wavefunction, 𝜒 for the spin state, and the subindices 𝐴
and 𝑆 stand for “antisymmetric” and “symmetric”, respectively. The options for 𝜙 are

𝜙𝐴(r1, r2) = 1√
2

[𝜙1(r1)𝜙2(r2) − 𝜙1(r2)𝜙2(r1)], (3.94)

and

𝜙𝑆(r1, r2) = 1√
2

[𝜙1(r1)𝜙2(r2) + 𝜙1(r2)𝜙2(r1)]. (3.95)

𝜒𝐴(𝑠1, 𝑠2) corresponds to the singlet state

|𝜒𝐴⟩ = 1√
2

(|↑↓⟩ − |↓↑⟩). (3.96)

𝜒𝑆(𝑠1, 𝑠2) can correspond to any of the triplet states,

|𝜒𝑆⟩ = |↑↑⟩ , or |𝜒𝑆⟩ = 1√
2

(|↑↓⟩ + |↓↑⟩), or |𝜒𝑆⟩ = |↓↓⟩ . (3.97)
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Let us estimate the difference in energy between the states |𝜓1⟩ and |𝜓2⟩. This can be
done by considering the expression

⟨𝜓1∣− 𝑒2

𝑟12
∣𝜓1⟩ − ⟨𝜓2∣− 𝑒2

𝑟12
∣𝜓2⟩ . (3.98)

However, we know that we can write

∣𝜓1,2⟩ = 1√
2

(|𝜙1, 𝜙2⟩ ± |𝜙2, 𝜙1⟩) ⊗ ∣𝜒𝐴,𝑆⟩ , (3.99)

with the negative sign holding for the spatially antisymmetric combination. Using this we
find that

⟨𝜓1∣− 𝑒2

𝑟12
∣𝜓1⟩ = ⟨𝜙𝑆∣− 𝑒2

𝑟12
∣𝜙𝑆⟩ , (3.100a)

= ∫ ⟨𝜙𝑆|r1, r2⟩ ⟨r1, r2|− 𝑒2

𝑟12
|𝜙𝑆⟩ d3𝑟1 d3𝑟2 , (3.100b)

= 𝐴 + 𝐵 + 𝐶 + 𝐷, (3.100c)

where 𝐴, 𝐵, 𝐶, and 𝐷 are given by

𝐴 = 1
2

∫ |𝜙1(r1)|2|𝜙2(r2)|2(− 𝑒2

𝑟12
) d3𝑟1 d3𝑟2 , (3.101a)

𝐵 = 1
2

∫ |𝜙1(r2)|2|𝜙2(r1)|2(− 𝑒2

𝑟12
) d3𝑟1 d3𝑟2 , (3.101b)

𝐶 = 1
2

∫ 𝜙∗
1(r1)𝜙∗

2(r2)(− 𝑒2

𝑟12
)𝜙1(r2)𝜙2(r1) d3𝑟1 d3𝑟2 , (3.101c)

𝐷 = 1
2

∫ 𝜙∗
1(r2)𝜙∗

2(r1)(− 𝑒2

𝑟12
)𝜙1(r1)𝜙2(r2) d3𝑟1 d3𝑟2 . (3.101d)

Similarly,

⟨𝜓2∣− 𝑒2

𝑟12
∣𝜓2⟩ = 𝐴 + 𝐵 − 𝐶 − 𝐷, (3.102)

and hence the difference in energy between the singlet and triplet states is 2(𝐶 + 𝐷),
which corresponds only to the “exchange” terms. Such an energy is closely dependent on
the Coulombian interaction.

Hamiltonian for a Lattice Model

Our goal will now be to model the exchange interaction by means of a simplified Hamilto-
nian, of the form

ℋ = 𝑐S1 ⋅ S2 + 𝑑. (3.103)

There are other options for lattice models (see Kardar 2007a, Sec. 6.1), but we shall start
with this Hamiltonian and walk towards the simpler Ising model, which already presents
a lot of interesting Physics.

– 103 –



To check whether Eq. (3.103) on page 104 reproduces the exchange interaction, we’ll
compute

⟨𝑠|S1 ⋅ S2|𝑠⟩ − ⟨𝑡|S1 ⋅ S2|𝑡⟩ , (3.104)

where |𝑠⟩ stands for the singlet state and |𝑡⟩ for the triplet.
Recall that

S1 ⋅ S2 = 𝑆1𝑥𝑆2𝑥 + 𝑆1𝑦𝑆2𝑦 + 𝑆1𝑧𝑆2𝑧, (3.105)

where each of the spin matrices is given in terms of Pauli matrices by

𝑆𝛼,𝑖 = ℏ
2

𝜎𝑖, (3.106)

with 𝛼 = 1, 2 and 𝑖 = 1, 2, 3.
Using the properties of the Pauli matrices and considering the singlet and triplet states

written in terms of the 𝜎𝑧 eigenvectors as

|𝑠⟩ = 1√
2

(|+−⟩ − |−+⟩), and |𝑡⟩ = 1√
2

(|+−⟩ + |−+⟩), (3.107)

one can show that

⟨𝑠|𝑐S1 ⋅ S2|𝑠⟩ − ⟨𝑡|𝑐S1 ⋅ S2|𝑡⟩ = −𝑐3ℏ2

4
− 𝑐ℏ2

4
= 𝑐ℏ2. (3.108)

From a qualitative point of view, this resembles the exchange interaction term. The
coefficient 𝑐 can then be identified as representing the inner products of the exchange
interaction. For 𝑐 > 0, the model will favor ferromagnetism, while 𝑐 < 0 leads to
antiferromagnetism.

Therefore, we shall consider the Hamiltonian

ℋ = − ̃𝐽 ∑
(𝑖,𝑗)

S𝑖 ⋅ S𝑗 − ̃H ⋅ ∑
𝑖

S𝑖, (3.109)

where (𝑖, 𝑗) denotes a sum over nearest neighbors. Kardar (2007a, p. 99) refers to this as
the O(𝑛) model (𝑛 being the number of entries in each of the vectors S𝑖), and points out
that different choices of 𝑛 are known particular cases. 𝑛 = 3 yields the Heisenberg model,
𝑛 = 2 the 𝑋𝑌-model, and 𝑛 = 1 the Ising model, which is the one we’re interested in.

Hence, from now on we’ll focus on the subcase with S𝑖 ⋅S𝑗 = 𝑆𝑖,𝑧𝑆𝑗,𝑧, where 𝑆𝑖,𝑧 = ±1
2 .

A simple variable redefinition allows us to write

ℋ = −𝐽 ∑
(𝑖,𝑗)

𝜎𝑖𝜎𝑗 − ℎ ∑
𝑖

𝜎𝑖, (3.110)

where 𝜎𝑖 = ±1.
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Bragg–Williams Mean Field Approximation

Our first approach to deal with the Ising model will be to perform a form of mean field
approximation known as the Bragg–Williams approximation. It consists in neglecting
fluctuations in the correlation functions. In other words, we write

⟨𝜎𝑖𝜎𝑗⟩ ≈ ⟨𝜎𝑖⟩ ⟨𝜎𝑗⟩ . (3.111)

Physically, this means that the spins care only about the overall magnetization, rather
than the values of their nearest neighbors.

If we employ Eq. (3.111) on the next page on the mean energy obtained from Eq. (3.110)
on the preceding page, we find

𝑈 = ⟨ℋ⟩ , (3.112a)
= −𝐽 ∑

(𝑖,𝑗)
⟨𝜎𝑖𝜎𝑗⟩ − ℎ ∑

𝑖
⟨𝜎𝑖⟩ , (3.112b)

≈ −𝐽 ∑
(𝑖,𝑗)

⟨𝜎𝑖⟩ ⟨𝜎𝑗⟩ − ℎ ∑
𝑖

⟨𝜎𝑖⟩ , (3.112c)

= −𝐽𝑑𝑁 ⟨𝜎⟩ ⟨𝜎⟩ − ℎ𝑁 ⟨𝜎⟩ , (3.112d)

where 𝑁 is the number of spins and 𝑑 is the system’s dimensionality.
⟨𝜎⟩ is nothing but the system’s magnetization, 𝑚. If we have 𝑁+ spins pointing up

and 𝑁− pointing down, we’ll have

𝑚 = ⟨𝜎⟩ =
𝑁+ − 𝑁−

𝑁
. (3.113)

Hence, the mean energy is
𝑈 = −𝐽𝑑𝑁𝑚2 − ℎ𝑁𝑚. (3.114)

The entropy can be found in terms of 𝑁+ and 𝑁−. It is given by

𝑆 = 𝑘𝐵 log( 𝑁!
𝑁+!𝑁−!

), (3.115a)

= 𝑘𝐵 log [ 𝑁!
(𝑁+𝑀

2 )!(𝑁−𝑀
2 )!

], (3.115b)

where we used the facts that 𝑁+ + 𝑁− = 𝑁 and 𝑁+ − 𝑁− = 𝑁𝑚 ≡ 𝑀. With the Stirling
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approximation, we find that

𝑆 = 𝑘𝐵 log 𝑁! − 𝑘𝐵 log (𝑁 + 𝑀
2

)! − 𝑘𝐵 log (𝑁 − 𝑀
2

)!, (3.116a)

= 𝑘𝐵𝑁 log 𝑁 − 𝑘𝐵𝑁 − 𝑘𝐵(𝑁 + 𝑀
2

) log (𝑁 + 𝑀
2

) + 𝑘𝐵(𝑁 + 𝑀
2

)

− 𝑘𝐵(𝑁 − 𝑀
2

) log (𝑁 − 𝑀
2

) + 𝑘𝐵(𝑁 − 𝑀
2

), (3.116b)

= 𝑘𝐵𝑁 log 𝑁 − 𝑘𝐵(𝑁 + 𝑀
2

) log (𝑁 + 𝑀
2

) − 𝑘𝐵(𝑁 − 𝑀
2

) log (𝑁 − 𝑀
2

), (3.116c)

𝑠 = 𝑘𝐵 log 𝑁 − 𝑘𝐵(1 + 𝑚
2

) log (𝑁 + 𝑀
2

) − 𝑘𝐵(1 − 𝑚
2

) log (𝑁 − 𝑀
2

), (3.116d)

= 𝑘𝐵 log 𝑁 − 𝑘𝐵(1 + 𝑚
2

) log (1 + 𝑚
2

) − 𝑘𝐵(1 − 𝑚
2

) log (1 − 𝑚
2

)

− 𝑘𝐵(1 + 𝑚
2

) log 𝑁 − 𝑘𝐵(1 − 𝑚
2

) log 𝑁, (3.116e)

= −𝑘𝐵(1 + 𝑚
2

) log (1 + 𝑚
2

) − 𝑘𝐵(1 − 𝑚
2

) log (1 − 𝑚
2

). (3.116f)

The Gibbs free energy will be given by

𝑔(𝑇 , ℎ) = min
𝑚

{𝑔(𝑇 , ℎ; 𝑚)}, (3.117)

where

𝑔(𝑇 , ℎ; 𝑚) = 𝑢(𝑇 , ℎ; 𝑚) − 𝑇 𝑆(𝑚), (3.118a)

= −𝐽𝑑𝑚2 − ℎ𝑚 + 𝑘𝐵𝑇[(1 + 𝑚
2

) log (1 + 𝑚
2

) + (1 − 𝑚
2

) log (1 − 𝑚
2

)].

(3.118b)

Let us then find these minima. One can show that

0 = ( 𝜕𝑔
𝜕𝑚

), (3.119a)

= −2𝐽𝑑𝑚 − ℎ + 𝑘𝐵𝑇
2

log (1 + 𝑚
1 − 𝑚

), (3.119b)

= −2𝐽𝑑𝑚 − ℎ + 𝑘𝐵𝑇 artanh 𝑚, (3.119c)

from which we find that
𝑚 = tanh(2𝛽𝐽𝑑𝑚 + 𝛽ℎ), (3.120)

which is just the Curie–Weiss equation. Hence, as promised, we have derived our previously
phenomenological prescription from a statistical model.

Hence, the Bragg–Williams approximation for the Ising model will recover the results
we previously obtained from phenomenological considerations. In particular, it predicts a
phase transition even at 𝑑 = 1, despite the fact that the exact Ising model does not have
such a feature. Cross reference
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Curie–Weiss Model

A different road to the Curie–Weiss equation is by means of the Curie–Weiss model.
While in the Bragg–Williams approximation we discarded the correlations, this time we’ll
keep them, but we’ll modify the model to keep it exactly solvable. Namely, instead of
Eq. (3.110) on the previous page, we’ll work with

ℋ = − 𝐽
2𝑁

𝑁
∑
𝑖=1

𝑁
∑
𝑗=1

𝜎𝑖𝜎𝑗 − ℎ
𝑁

∑
𝑖=1

𝜎𝑖, (3.121)

and hence we now consider a model in which all spins interact with all spins. The division
by 𝑁 in the first term is to ensure the thermodynamic limit is still well defined.

This time, we’ll compute the partition function for the theory. We know it will be
given by

𝑍 = ∑
{𝜎}

exp( 𝛽𝐽
2𝑁

𝑁
∑
𝑖=1

𝑁
∑
𝑗=1

𝜎𝑖𝜎𝑗 + 𝛽ℎ
𝑁

∑
𝑖=1

𝜎𝑖), (3.122a)

= ∑
{𝜎}

exp ⎡⎢
⎣

𝛽𝐽
2𝑁

(
𝑁

∑
𝑖=1

𝜎𝑖)
2

+ 𝛽ℎ
𝑁

∑
𝑖=1

𝜎𝑖
⎤⎥
⎦

. (3.122b)

To compute this sum, we’ll notice that

∫
+∞

−∞
𝑒−𝑥2+2𝑎𝑥 d𝑥 =

√
𝜋𝑒𝑎2 , (3.123)

which allows us to write

exp ⎡⎢
⎣

𝛽𝐽
2𝑁

(
𝑁

∑
𝑖=1

𝜎𝑖)
2

⎤⎥
⎦

= 1√
𝜋

∫
+∞

−∞
exp[−𝑥2 + √2𝛽𝐽

𝑁
(

𝑁
∑
𝑖=1

𝜎𝑖)𝑥] d𝑥 . (3.124)

The advantage of this trick is that now we can put the partition function in a form in
which it decomposes and resembles that of a non-interacting system. More specifically,
we can write

𝑍 = ∑
{𝜎}

exp ⎡⎢
⎣

𝛽𝐽
2𝑁

(
𝑁

∑
𝑖=1

𝜎𝑖)
2

+ 𝛽ℎ
𝑁

∑
𝑖=1

𝜎𝑖
⎤⎥
⎦

, (3.125a)

= 1√
𝜋

∑
{𝜎}

∫
+∞

−∞
exp[−𝑥2 + (√2𝛽𝐽

𝑁
𝑥 + 𝛽ℎ)(

𝑁
∑
𝑖=1

𝜎𝑖)] d𝑥 , (3.125b)

= 1√
𝜋

∫
+∞

−∞
𝑒−𝑥2 ∑

{𝜎}
exp[(√2𝛽𝐽

𝑁
𝑥 + 𝛽ℎ)(

𝑁
∑
𝑖=1

𝜎𝑖)] d𝑥 , (3.125c)

= 1√
𝜋

∫
+∞

−∞
𝑒−𝑥2 ∑

{𝜎}

𝑁
∏
𝑖=1

exp[(√2𝛽𝐽
𝑁

𝑥 + 𝛽ℎ)𝜎𝑖] d𝑥 , (3.125d)
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= 1√
𝜋

∫
+∞

−∞
𝑒−𝑥2(∑

𝜎
exp[(√2𝛽𝐽

𝑁
𝑥 + 𝛽ℎ)𝜎])

𝑁

d𝑥 , (3.125e)

= 1√
𝜋

∫
+∞

−∞
𝑒−𝑥2(𝑒−(√ 2𝛽𝐽

𝑁 𝑥+𝛽ℎ) + 𝑒+(√ 2𝛽𝐽
𝑁 𝑥+𝛽ℎ))

𝑁

d𝑥 , (3.125f)

= 1√
𝜋

∫
+∞

−∞
𝑒−𝑥2[2 cosh (√2𝛽𝐽

𝑁
𝑥 + 𝛽ℎ)]

𝑁

d𝑥 , (3.125g)

= 1√
𝜋

∫
+∞

−∞
𝑒−𝑥2+𝑁 log [2 cosh (√ 2𝛽𝐽

𝑁 𝑥+𝛽ℎ)] d𝑥 . (3.125h)

Let us change variables by defining 𝑚 through

√2𝛽𝐽
𝑁

𝑥 = 𝛽𝐽𝑚. (3.126)

This allows us to write

𝑍 = √𝛽𝐽𝑁
2𝜋

∫
+∞

−∞
𝑒− 𝛽𝐽𝑁

2 𝑚2+𝑁 log [2 cosh (𝛽𝐽𝑚+𝛽ℎ)] d𝑚 . (3.127)

Or, alternatively,

𝑍 = √𝛽𝐽𝑁
2𝜋

∫
+∞

−∞
𝑒−𝛽𝑁𝑔(𝑇 ,ℎ;𝑚) d𝑚 , (3.128)

where
𝑔(𝑇 , ℎ; 𝑚) = 𝐽𝑚2

2
− 1

𝛽
log [2 cosh (𝛽𝐽𝑚 + 𝛽ℎ)]. (3.129)

To obtain the Gibbs free energy in the thermodynamic limit, we can use Laplace’s
method (see Erdélyi 1956, Sec. 2.4) to compute Eq. (3.128) on page 109. We’ll end up
with

𝑔(𝑇 , ℎ) = lim
𝑁→+∞

(− 1
𝛽𝑁

log 𝑍) = min
𝑚

{𝑔(𝑇 , ℎ; 𝑚)}. (3.130)

We can use Eq. (3.129) to find this minimum. We notice that

𝜕𝑔
𝜕𝑚

= 𝐽𝑚 − 𝐽 tanh(𝛽𝐽𝑚 + 𝛽ℎ) = 0, (3.131)

from which we find
𝑚 = tanh(𝛽𝐽𝑚 + 𝛽ℎ), (3.132)

which is the Curie–Weiss equation.
Notice Eqs. (3.118) and (3.129) on page 107 and on the current page are particularly

different, and hence they have different expansions in the Landau phenomenology. In spite
of that, they lead to the very same critical exponents corresponding to mean field theory.
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Bogoliubov Inequality

Yet another mean field theoretic approach we can employ to simplify the Ising model is
the so-called Bogoliubov inequality. This time, we’ll consider the system we can’t solve
exactly (the Ising model) as a modification of some other system we can solve. If we
denote the Hamiltonian of the latter by ℋ0 and that of the former by ℋ, we can write

ℋ(𝜆) = ℋ0 + 𝜆ℋ1, (3.133)

where 𝜆 is a parameter that allows us to “turn on and off” the effects of ℋ1. For 𝜆 = 1,
we get the Ising model. For 𝜆 = 0, we get the simplified model we can solve exactly.

The so-called Bogoliubov inequality is an estimate on the free energy associated to
each of the systems being considered. More specifically, the free energy for the system
with parameter 𝜆 respects

𝐹(𝜆) ≤ 𝐹(0) + 𝜆 ⟨ℋ1⟩0 , (3.134)

where ⟨⋅⟩0 denotes an ensemble average under the Hamiltonian ℋ0.
To show this estimate, let us begin by noticing the free energy14 is given by

− 𝛽𝐹(𝜆) = log(∑
𝜎

𝑒−𝛽𝐸𝜎(𝜆)) ≡ log(tr 𝑒−𝛽ℋ(𝜆)), (3.135)

where the logarithm’s argument is the partition function and the sum runs over the
possible configurations (states) of the system. The trace defined by the second equality
corresponds simply to a sum of the operator’s eigenvalues (in the quantum theory), or to
a sum over the possible energies (in the classical theory). We introduce this notation to
keep the expressions a bit more compact and to keep them in the same notation used by
Callen (1985, Sec. 20.1).

If we differentiate Eq. (3.135) with respect to 𝜆, we get to

−𝛽d𝐹
d𝜆

= −𝛽tr ℋ1𝑒−𝛽(ℋ0+𝜆ℋ1)

tr 𝑒−𝛽(ℋ0+𝜆ℋ1) , (3.136a)

d𝐹
d𝜆

= ⟨ℋ1⟩𝜆 , (3.136b)

where ⟨⋅⟩𝜆 denotes an ensemble average under the Hamiltonian ℋ(𝜆).
14The free energy might be the Helmholtz or the Gibbs free energy, depending on the particular problem

we’re interested in and on the ensemble we’re working with. Callen (1985, Sec. 20.1) states it in terms of
the Helmholtz free energy, while Prof. Fiore’s lecture notes state the result in terms of the Gibbs free
energy. The difference, as far as I can tell, is only on whether one is working in the canonical ensemble or
in the Gibbs canonical ensemble (see Kardar 2007b, Sec. 4.8).
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Similarly, a second derivative yields

d2𝐹
d𝜆2 = d

d𝜆
[tr ℋ1𝑒−𝛽(ℋ0+𝜆ℋ1)

tr 𝑒−𝛽(ℋ0+𝜆ℋ1) ], (3.137a)

= −𝛽[tr ℋ2
1𝑒−𝛽(ℋ0+𝜆ℋ1)

tr 𝑒−𝛽(ℋ0+𝜆ℋ1) − (tr ℋ1𝑒−𝛽(ℋ0+𝜆ℋ1)

tr 𝑒−𝛽(ℋ0+𝜆ℋ1) )
2

], (3.137b)

= −𝛽[⟨ℋ2
1⟩

𝜆
− ⟨ℋ1⟩2

𝜆], (3.137c)

= −𝛽 ⟨ℋ1 − ⟨ℋ1⟩𝜆⟩
2

𝜆
. (3.137d)

Notice Eq. (3.137) implies d2𝐹
d𝜆2 ≤ 0 for any values of 𝜆, i.e., 𝐹(𝜆) is an everywhere

concave function of 𝜆. As a consequence, it must lie beneath the line tangent to itself at
𝜆. Mathematically,

𝐹(𝜆) ≤ 𝐹(0) + 𝜆 ⟨ℋ1⟩0 , (3.138)

where we used Eq. (3.136). This inequality is represented graphically on Fig. 3.18 on the
next page.

0
𝜆

𝐹

𝐹 (0) + 𝜆⟨ℋ1⟩0

𝐹(𝜆)

Figure 3.18: Grafical representation of the Bogoliubov inequality, Eq. (3.138) on page 110.

Let us now apply this result to the Ising model. The Hamiltonian we’re interested
in studying is Eq. (3.110) on page 105. The exactly solvable Hamiltonian ℋ0 we’ll be
considering is

ℋ0 = −𝜂 ∑
𝑖

𝜎𝑖. (3.139)

Hence, we get
ℋ1 = ℋ − ℋ0 = −𝐽 ∑

(𝑖,𝑗)
𝜎𝑖𝜎𝑗 − (ℎ − 𝜂) ∑

𝑖
𝜎𝑖. (3.140)
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For ℋ0 we have

𝑍0 = ∑
{𝜎}

𝑒𝛽𝜂 ∑𝑁
𝑖=1 𝜎𝑖 , (3.141a)

= ∑
{𝜎}

𝑁
∏
𝑖=1

𝑒𝛽𝜂𝜎𝑖 , (3.141b)

= (∑
𝜎

𝑒𝛽𝜂𝜎)
𝑁

, (3.141c)

= (2 cosh 𝛽𝜂)𝑁, (3.141d)

and therefore
𝐹(0) = −𝑁𝑘𝐵𝑇 log(2 cosh 𝛽𝜂). (3.142)

Hence,

⟨𝜎⟩0 = 𝑚, (3.143a)

= − 1
𝑁

(𝜕𝐹
𝜕ℎ

)
𝑇
, (3.143b)

= tanh 𝛽𝜂. (3.143c)

Furthermore,

⟨ℋ1⟩0 = −𝐽 ∑
(𝑖,𝑗)

⟨𝜎𝑖𝜎𝑗⟩0
− (ℎ − 𝜂) ∑

𝑖
⟨𝜎𝑖⟩0 , (3.144a)

= −𝐽 ∑
(𝑖,𝑗)

⟨𝜎𝑖⟩0 ⟨𝜎𝑗⟩0
− (ℎ − 𝜂) ∑

𝑖
⟨𝜎𝑖⟩0 , (3.144b)

= −𝐽𝑁𝑑 ⟨𝜎⟩0 ⟨𝜎⟩0 − (ℎ − 𝜂)𝑁 ⟨𝜎⟩0 , (3.144c)

= −𝐽𝑁𝑑 tanh2(𝛽𝜂) − (ℎ − 𝜂)𝑁 tanh 𝛽𝜂. (3.144d)

Hence, we learn that the free energy for the problem we’re interested in satisfies

𝑓(𝑇 , ℎ) ≤ 𝐹(0)
𝑁

+
⟨ℋ1⟩0

𝑁
, (3.145a)

= −𝑘𝐵𝑇 log(2 cosh 𝛽𝜂) − 𝐽𝑑 tanh2(𝛽𝜂) − (ℎ − 𝜂) tanh 𝛽𝜂. (3.145b)

Since this holds for any 𝜂, we can minimize the expression on the right to get the most
stringent estimate. Therefore, we write

𝑓(𝑇 , ℎ) ≤ − max
𝜂

{𝑘𝐵𝑇 log(2 cosh 𝛽𝜂) + 𝐽𝑑 tanh2(𝛽𝜂) + (ℎ − 𝜂) tanh 𝛽𝜂} (3.146a)

(notice we pulled a minus sign out of the maximum, which is why we wrote a maximum
instead of a minimum). If we define

𝑓(𝑇 , ℎ; 𝜂) = 𝑘𝐵𝑇 log(2 cosh 𝛽𝜂) + 𝐽𝑑 tanh2(𝛽𝜂) + (ℎ − 𝜂) tanh 𝛽𝜂, (3.147)
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we can find the point we are interested in by noticing that

𝜕𝑓
𝜕𝜂

= 2𝐽𝑑𝛽 sech2(𝛽𝜂) tanh 𝛽𝜂 + 𝛽(ℎ − 𝜂) sech2(𝛽𝜂), (3.148)

and hence 𝜕𝑓
𝜕𝜂 = 0 translates to

2𝐽𝑑 tanh 𝛽𝜂 = (𝜂 − ℎ). (3.149)

If we now recall Eq. (3.143) on the next page and simplify the resulting expressions, we
see that

2𝐽𝑑 tanh 𝛽𝜂 = (𝜂 − ℎ), (3.150a)
2𝐽𝑑𝑚 + ℎ = 𝜂, (3.150b)

2𝛽𝐽𝑑𝑚 + 𝛽ℎ = 𝛽𝜂, (3.150c)
tanh(2𝛽𝐽𝑑𝑚 + 𝛽ℎ) = tanh(𝛽𝜂), (3.150d)
tanh(2𝛽𝐽𝑑𝑚 + 𝛽ℎ) = 𝑚, (3.150e)

which is, for the third time, the Curie–Weiss equation.

Transfer Matrix Method

While mean field approximations are interesting and provide us with important information,
we also wonder whether there is a way to solve the Ising model exactly. In fact, for 𝑑 = 1
and 𝑑 = 2 there is. In this section, we’ll use the 𝑑 = 1 case to illustrate the transfer
matrix method, which can be generalized for other systems and dimensionalities to obtain
information about interacting systems. For 𝑑 = 2, see, e.g., the texts by Kardar (2007a,
Chap. 7) and Pathria and Beale (2022, Chap. 13). For the 𝑑 = 1 case, we’ll follow Prof.
Fiore’s lectures, supplemented by the texts by Kardar (2007a, Sec. 6.2) and Salinas (2001,
Sec. 13.1).

In one dimensions, the Hamiltonian for the Ising model, Eq. (3.110) on page 105, can
be written as

ℋ = −𝐽
𝑁

∑
𝑖=1

𝜎𝑖𝜎𝑖+1 − ℎ
𝑁

∑
𝑖=1

𝜎𝑖, (3.151)

where we are assuming periodic boundary conditions: 𝜎𝑁+1 = 𝜎1. Hence, the Ising chain
is arranged in a circle.

Our goal will be to write the partition function for the model as the trace of a power
of a matrix, known as the transfer matrix. Since the trace is basis independent, we can
compute it by diagonalizing the transfer matrix. Furthermore, we’ll see that the partition
function in the thermodynamic limit is dominated by the largest eigenvalue, and hence
we don’t even need to find all eigenvalues. This will allows us to obtain an exact solution
to the model.

The partition function can be written as

𝑍 = ∑
{𝜎}

𝑒𝛽𝐽 ∑𝑁
𝑖=1 𝜎𝑖𝜎𝑖+1+𝛽ℎ ∑𝑁

𝑖=1 𝜎𝑖 , (3.152a)
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= ∑
{𝜎}

𝑒𝛽𝐽 ∑𝑁
𝑖=1 𝜎𝑖𝜎𝑖+1+ 𝛽ℎ

2 ∑𝑁
𝑖=1(𝜎𝑖+𝜎𝑖+1), (3.152b)

= ∑
{𝜎}

𝑁
∏
𝑖=1

𝑒𝛽𝐽𝜎𝑖𝜎𝑖+1+ 𝛽ℎ
2 (𝜎𝑖+𝜎𝑖+1). (3.152c)

We can now understand the quantity inside the product as the elements of a matrix. More
specifically, we define the transfer matrix ̂𝑇 as having the elements

⟨𝜎𝑖∣ ̂𝑇∣𝜎𝑗⟩ = 𝑒𝛽𝐽𝜎𝑖𝜎𝑗+ 𝛽ℎ
2 (𝜎𝑖+𝜎𝑗). (3.153)

Since 𝜎𝑖 = ±1, this means ̂𝑇 is given by

̂𝑇 = (𝑒𝛽𝐽+𝛽ℎ 𝑒−𝛽𝐽

𝑒−𝛽𝐽 𝑒𝛽𝐽−𝛽ℎ) . (3.154)

The advantage of this definition is that we can now write

𝑍 = ∑
{𝜎}

𝑁
∏
𝑖=1

⟨𝜎𝑖| ̂𝑇|𝜎𝑖+1⟩ , (3.155a)

= ∑
{𝜎}

⟨𝜎1| ̂𝑇|𝜎2⟩ ⟨𝜎2| ̂𝑇|𝜎3⟩ ⋯ ⟨𝜎𝑁| ̂𝑇|𝜎1⟩ , (3.155b)

= ∑
𝜎1,𝜎2,…,𝜎𝑁

⟨𝜎1| ̂𝑇|𝜎2⟩ ⟨𝜎2| ̂𝑇|𝜎3⟩ ⋯ ⟨𝜎𝑁| ̂𝑇|𝜎1⟩ , (3.155c)

= ∑
𝜎1

⟨𝜎1| ̂𝑇 𝑁|𝜎1⟩ , (3.155d)

= Tr[ ̂𝑇 𝑁], (3.155e)

where we repeatedly used the resolution of the identity and then the definition of trace.
Since the trace is independent of basis, we can compute it in the eigenbasis of ̂𝑇. As

we can see on Eq. (3.154) on the next page, ̂𝑇 is symmetric, and hence diagonalizable. If
𝜆1 and 𝜆2 are the eigenvalues of ̂𝑇, we’ll then have

𝑍 = 𝜆𝑁
1 + 𝜆𝑁

2 . (3.156)

Suppose, without any loss of generality, that 𝜆1 ≥ 𝜆2. Then we can write

𝑍 = 𝜆𝑁
1 [1 + (𝜆2

𝜆1
)

𝑁

]. (3.157)

Diagonalizing Eq. (3.154), we find the eigenvalues

𝜆1,2 = 𝑒𝛽𝐽 cosh 𝛽ℎ ± √𝑒2𝛽𝐽 cosh2 𝛽ℎ − 2 sinh(2𝛽𝐽). (3.158)

At ℎ = 0, notice we get

𝜆1 = 2 cosh 𝛽𝐽 and 𝜆 = 2 sinh 𝛽𝐽. (3.159)
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Hence, we have 𝜆1 > 𝜆2 for 𝑇 > 0, but 𝜆1 = 𝜆2 for 𝑇 = 0. In situations with 𝜆1 > 𝜆2,
the thermodynamic limit and Eq. (3.157) on the previous page lead us to

𝑔(𝑇 , ℎ) = −𝑘𝐵𝑇 log 𝜆1, (3.160)

for the term (𝜆2
𝜆1

)
𝑁

ends up vanishing in the limit.
For 𝑇 > 0, we get from the previous expressions the Gibbs free energy per site

𝑔(𝑇 , ℎ) = −𝑘𝐵𝑇 log(𝑒𝛽𝐽 cosh 𝛽ℎ + √𝑒2𝛽𝐽 cosh2 𝛽ℎ − 2 sinh(2𝛽𝐽)). (3.161)

Differentiating this expression leads us to the magnetization

𝑚(𝑇 , ℎ) = −( 𝜕𝑔
𝜕ℎ

)
𝑇

= sinh 𝛽ℎ
√sinh2 𝛽ℎ + 𝑒−4𝛽𝐽

. (3.162)

Notice this expression vanishes for ℎ = 0 regardless of the temperature 𝑇 > 0. Hence, we
get only a paramagnetic phase, and the model fails to explain ferromagnetism. We can
still get a trivial phase transition at 𝑇 = 0, but since this is a semiclassical model, this
isn’t such an interesting result.

Kardar (2007a, p. 103) points out that the absence of phase transitions at finite
temperature is a fairly general property of one-dimensional spin chains. Salinas (2001,
p. 262) mentions there is an argument attributed to Landau to understand why that is
so, at least in the Ising model. Suppose we have an ordered phase of up spins. Suppose
further that we are to flip the spins up from some point onward. The energy cost for
doing this is merely Δ𝑈 = 2𝐽 > 0 due to antialigning a pair of spins. Nevertheless, since
there are 𝑁 possible places for the flipping to occur, the entropy change is Δ𝑆 = 𝑘𝐵 log 𝑁.
Hence, the change in Gibbs free energy is

Δ𝐺 = 2𝐽 − 𝑘𝐵𝑇 log 𝑁, (3.163)

which, for 𝑇 > 0 and sufficiently large 𝑁, is negative. Hence, the spontaneous creation of
new domains is favored, and ordered domains are unstable.

4 Nonequilibrium Thermodynamics
In possession of the concepts and techniques we’ve covered so far, we’re ready to tackle
nonequilibrium systems. We’ll begin by considering phase transitions in nonequilibrium
systems.

4.1 Phase Transitions in Nonequilibrium Systems

When dealing with phase transitions in equilibrium systems on Section 3, we were able
to obtain physical information by analyzing partition functions and the free energy.
Nevertheless, those techniques will not be available in out-of-equilibrium situations.
Instead, we shall use the master equation introduced on Section 1.
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To understand the physical significance of what we are about to study, let us first
notice that phase transitions can occur even in systems that are not clearly characterized
by quantities such as temperature, pressure, magnetic fields, and so on. In fact, we might
be interested in studying systems that are not even describable in terms of a Hamiltonian.

For example, consider a shoal of fish. A “shoal” is a group of fish swimming close to
each other for social reasons. A “school” is a type of shoal in which the fish are swimming
in an orderly manner (Pitcher 1986, pp. 294–296), often with all individuals swimming
in the same direction with the same speed. Notice that the fact of whether the shoal is
schooling or not defines two phases in the system: a disordered phase (shoaling, but not
schooling) and an ordered phase (schooling). How can we characterize these two phases
in such a system?

Shoals and Schools of Fish

For simplicity, let us assume the fish can swim along only one direction, but heading
towards either way. For example, they can swim only north or south. Notice this
simplification is similar to the one we made on the O(𝑁) model to obtain the Ising model.
Under this hypothesis, we can let 𝑚 denote the fraction of fishes swimming towards some
direction, i.e.,

𝑚 = 𝑁north − 𝑁south
𝑁

. (4.1)

While we don’t have a Hamiltonian for this system, it is symmetric in exchanging north
and south. Hence, it is reasonable to guess 𝑚 should evolve in time according to a
differential equation of the form

d𝑚
d𝑡

= (𝑎𝑐 − 𝑎)𝑚 − 𝑏𝑚3 + 𝒪(𝑚5), (4.2)

where 𝑎 is some control parameter, analogous to temperature. Symmetry forbids any even
terms from occurring on the right-hand side. The terms 𝑚5 onward can be neglected if
we are interested in modelling a second-order phase transition, but they are relevant for
first-order transitions.

Let us solve Eq. (4.2) on the following page considering only up to third order terms.
We can write

d𝑚
d𝑡

= (𝑎𝑐 − 𝑎)𝑚 − 𝑏𝑚3, (4.3a)

𝑚d𝑚
d𝑡

= (𝑎𝑐 − 𝑎)𝑚2 − 𝑏𝑚4, (4.3b)

1
2

d𝑚2

d𝑡
= (𝑎𝑐 − 𝑎)𝑚2 − 𝑏𝑚4. (4.3c)

This is now a separable differential equation. Integrating it, one finds

𝑚2(𝑡) = 𝑎𝑐 − 𝑎
𝑏[1 − 𝐴𝑒−2(𝑎𝑐−𝑎)𝑡]

, (4.4)
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0 𝑎𝑐
𝑎

0

−√𝑎𝑐
𝑏

+√𝑎𝑐
𝑏

𝑚

Figure 4.1: Nonequilibrium steady states (NESS) for Eq. (4.2) on page 115 to order 𝑚3. Notice
that the order parameter vanishes continuously, and hence this is a continuous ( i.e.,
second-order) transition.

where the integration constant 𝐴 can be related to 𝑚2(0) through

𝐴 = 1 − 𝑎𝑐 − 𝑎
𝑏𝑚2(0)

. (4.5)

This prescription fails for 𝑚2(0) = 0 (it leaves 𝐴 undefined), in which case the solution is
the trivial solution 𝑚2(𝑡) = 0.

A steady state of Eq. (4.2) will be characterized by d𝑚
d𝑡 = 0. To order 𝑚3, the stable

solutions to this equation are

𝑚 = {
±√𝑎𝑐−𝑎

𝑏 , if 𝑎 ≤ 𝑎𝑐,
0, if 𝑎 ≥ 𝑎𝑐.

(4.6)

This expression is plotted on Fig. 4.1. Since the order parameter vanishes 𝑚 vanishes
continuously with the control parameter 𝑎, we are describing a continuous transition.
Notice that schools are formed for 𝑎 < 𝑎𝑐, since fish start to swim towards the same
direction. For 𝑎 > 𝑎𝑐, we have disorder. 𝑎 = 𝑎𝑐 is a critical value (for 𝑏 > 0) and the
critical exponent 𝛽 is 𝛽 = 1

2 (just as is mean field theory, being hence an example of
universality). Note also that the cases of Eq. (4.6) turn out to be the late time behavior
of Eq. (4.4) for 𝑚(0) ≠ 0 (which means they are the stable steady states).

Notice the model of Eq. (4.2) on the previous page does not apply specifically to
fish shoals: its assumptions were as simple as a ℤ2 symmetry. Hence, a vast number
of systems with completely different characteristics will present the very same critical
exponent 𝛽 = 1

2 , despite each one of them having different interpretations for 𝑚 and
different values for 𝑎, 𝑎𝑐, and 𝑏. This is what is meant by “universality”.
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Discontinuous Phase Transitions

To model a discontinuous phase transition, we can keep the 𝑚5 term on Eq. (4.2) on
page 115 and write1

d𝑚
d𝑡

= (𝑎𝑏 − 𝑎)𝑚 + 𝑏𝑚3 − 𝑐𝑚5. (4.7)

Notice the difference in sign between the second and third terms.
The steady states are given by 𝑚 = 0 (as usual) and by the solutions to

(𝑎𝑏 − 𝑎) + 𝑏𝑚2 − 𝑐𝑚4 = 0, (4.8)

which are

𝑚2 =
𝑏 ± √𝑏2 − 4(𝑎 − 𝑎𝑏)𝑐

2𝑐
. (4.9)

Notice these solutions are only physical while they are real. Hence, at some value 𝑎 = 𝑎𝑓
(𝑓 stands for ferromagnetic) we have a discontinuous jump from 𝑚2 = 𝑏

2𝑐 to 𝑚2 = 0. 𝑎𝑓 is
given by when the argument of the square root vanishes, i.e.,

𝑎𝑓 = 𝑎𝑏 + 𝑏2

4𝑐
. (4.10)

The nonequilibrium steady states (NESS) as given in terms of 𝑚2 are shown on Fig. 4.2
on the following page. As the graph suggests, we could also find 𝑎𝑓 by writing 𝑎 as a
quadratic function of 𝑚2 and finding its peak.

To figure out the stability of each steady state, we could try to resort to the same
methods we used previously (solve the differential equation for 𝑚(𝑡)), but in this case
we are dealing with a far more complex equation. A different possibility is to perform a
linear stability analysis (Strogatz 2018, see).

For small 𝑚 (say 𝑚(𝑡) ≪ 1), we can approximate Eq. (4.7) on the previous page by

d𝑚
d𝑡

≈ (𝑎𝑏 − 𝑎)𝑚, (4.11)

the solution to which is
𝑚(𝑡) ≈ 𝑚(0)𝑒(𝑎𝑏−𝑎)𝑡, (4.12)

which means 𝑚(0) is stable for 𝑎 > 𝑎𝑏, as indicated on Fig. 4.2 on the following page.
For the other solutions, it is more convenient to write the differential equation as

1
2

d𝑚2

d𝑡
= −𝑐𝑚2(𝑚2 − 𝑚2

−)(𝑚2 − 𝑚2
+), (4.13)

where 𝑚2
± stand for the different nontrivial solutions 𝑚2

+ ≥ 𝑚2
−. Using this expression,

one can get a linear approximation near 𝑚2
± and use it to check whether the solutions get

1Eq. (4.7) differs from Prof. Fiore’s version by two signs (an overall sign and the sign of the linear
term). I believe this difference is necessary in order to reproduce the discontinuous phase transition, but
look out for possible mistakes on my calculations.
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0 𝑎𝑏 𝑎𝑓
𝑎

0

𝑏
2𝑐

𝑚
2

Figure 4.2: Nonequilibrium steady states (NESS) for Eq. (4.7) on page 117. The dashed lines
are unstable, while solid lines are stable. Notice that for 𝑎𝑏 < 𝑎 < 𝑎𝑓 there are two
possible phases (bistability).

closer or farther away from 𝑚2
± as time passes. One learns that 𝑚2

+ is always unstable and
𝑚2

− is unstable for 𝑎𝑏 < 𝑎 < 𝑎𝑓 (which is the region of interest, since it becomes negative
for 𝑎 < 𝑎𝑏). This is depicted on Fig. 4.2 on the next page.

Notice that the region 𝑎𝑏 < 𝑎 < 𝑎𝑓 corresponds to a bistable hysteretic branch, i.e.,
there are two possible coexisting phases and the actual phase of the system will depend
on the history of the system. If its initial state was below 𝑚2 = 𝑚2

−, it evolves towards
𝑚 = 0, but if its initial state was above 𝑚2 = 𝑚2

− it will evolve towards 𝑚2 = 𝑚2
+. This

is a characteristic feature of discontinuous phase transitions.

4.2 Majority Vote Model

Another interesting example we can mention is the majority-vote model. It models the
evolution of individual opinions in a community, where each particular individual decides
their opinion based on the opinion of the majority of their neighbors. We can consider
hesitant and receptive individuals—the former tend to act against the majority of their
neighbors, while the latter act in favor of the majority.

The model consists in labelling opinions in favor or against some affirmation as being
valued as ±1. +1 if in favor, −1 if against. There is a probability 𝑓 ≤ 0.5 that an
individual will not follow the opinion of the majority of its neighbors, and a probability
1 − 𝑓 that they will (see Fig. 4.3 on the following page).

Later, we’ll see that this model, as simple as it may be, presents a phase transition Cross reference
similar to the ones we’ve found in the previous equilibrium models. However, this model
has positive entropy production, and hence it is not in equilibrium.
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𝐵

𝐴

𝑓

Figure 4.3: Transition probabilities for the majority vote model. 𝐴 and 𝐵 denote different
opinions (if one is +1, the other is −1 and vice-versa). 𝑓 ≤ 0.5 is the transition
probability for the individual to not follow the opinion of the majority of its neighbors.
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As with the fish, we can define the fraction of individuals in favor of some opinion as

𝑚 =
𝑁+ − 𝑁−

𝑁
, (4.14)

in analogy with the ferromagnetic systems. For very small 𝑓, we expect a dominant
opinion to predominate. Nevertheless, for 𝑓 ≈ 0.5, both opinions should be coexisting
as individuals change their mind nearly randomly. Hence, we get a disordered phase.
Somewhere in between, we get a phase transition at 𝑓𝑐. This critical value 𝑓𝑐 will depend
on aspects such as dimensionality and topology. Different neighbor arrangements might
lead to different results (M. J. de Oliveira 1992, compare; Pereira and Moreira 2005).

Since now we’re working out-of-equilibrium, we’ll need to write transition rates and
evolve the system with a master equation. Notice that the dynamics shown on Fig. 4.3 is
described by the flipping transition rate

𝑤𝑖(𝜎) = 1
2

[1 − (1 − 2𝑓)𝜎𝑖 sign (∑
𝛿

𝜎𝑖+𝛿)], (4.15)

where the sum runs over next neighbors of 𝑖. Hence, the individual 𝑖 will change opinion
with probability 𝑤𝑖(𝜎).

We then have main two ways of approaching the problem: either with mathematical
approximations or numerically. Numerical simulations on a lattice have been done, e.g.,
by M. J. de Oliveira (1992) and Pereira and Moreira (2005), and found that the critical
exponents are the same as for the Ising model. A difficulty with numerical simulations is
that the divergences of phase transitions only occur in the thermodynamic limit, so one
won’t really see divergences on a lattice. Nevertheless, one can notice a phase transition
occurring by increasing the lattice’s size and noticing how a peak rises more and more in
the variance of the quantity whose average plays the role of order parameter2.

Mean Field Treatment of the Majority Vote Model

A way of approximating the majority vote model is to use the master equation and ignore
correlations to obtain the expression

d𝑚
d𝑡

= (1 − 6𝑓)
2

𝑚 − (1 − 2𝑓)
2

𝑚3, (4.16)

which holds for a system in which each individual has four neighbors. Notice that this
has the same form of Eq. (4.2) on page 115, and hence the steady state solution will have

𝑚 = {
±√1−6𝑓

1−2𝑓 , if 𝑓 ≤ 1
6 ,

0, if 𝑓 ≥ 1
6 .

(4.17)

2Notice that the variance of such a quantity plays a role similar to that of the susceptibility in the
ferromagnetic models. Furthermore, just a peak is not enough: remember the Schottky anomaly has a
peak in the specific heat, but no phase transition. Another possibility to be sure of the phase transition is
to compute a third quantity in addition to the mean and variance.
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Not only does this provide more information on the behavior of the majority vote
model, but it also provides an example of a statistical system that leads to Eq. (4.2) on
page 115. Let us then derive it.

Quite naturally, we’ll start with the master equation,

d𝑃𝜎
d𝑡

= ∑
𝜎′≠𝜎

𝑊𝜎𝜎′𝑃𝜎′ − 𝑊𝜎′𝜎𝑃𝜎, (4.18)

where 𝜎 = (𝜎1, … , 𝜎𝑁) is the state, given as a collection of the values of all spins in the
model.

We’ll make a simplification known as “one-site dynamics”. It consists in assuming the
system can only flip a single spin at a time, so that all of the possible neighbor states
𝜎′ are of the form 𝜎′ = (𝜎1, … , 𝜎𝑖−1, −𝜎𝑖, 𝜎𝑖+1, … , 𝜎𝑁). Under this simplification, we can Add a comment

on the simplifi-
cation? Maybe
check references
mentioned by
J. M. Encinas
et al. (2018,
MFT results).

write the transition rates 𝑊𝜎′𝜎 as

𝑊𝜎′𝜎 =
𝑁

∑
𝑖=1

𝛿𝜎′
1,𝜎1

𝛿𝜎′
2,𝜎2

⋯ 𝛿𝜎′
𝑖−1,𝜎𝑖−1

𝛿𝜎′
𝑖,−𝜎𝑖

𝛿𝜎′
𝑖+1,𝜎𝑖+1

⋯ 𝛿𝜎′
𝑁,𝜎𝑁

𝑤𝑖(𝜎), (4.19)

with 𝑤𝑖(𝜎) being given by Eq. (4.15). Using this expression in the master equation leads
us to

d𝑃𝜎
d𝑡

=
𝑁

∑
𝑖=1

𝑤𝑖(𝜎𝑖)𝑃𝜎𝑖 − 𝑤𝑖(𝜎)𝑃𝜎, (4.20)

where we wrote 𝜎𝑖 ≡ (𝜎1, … , 𝜎𝑖−1, −𝜎𝑖, 𝜎𝑖+1, … , 𝜎𝑁).
Let us now suppose we want to compute the ensemble average of a quantity 𝑓(𝜎),

which depends only on the system’s state, but not on time. Then

⟨𝑓(𝜎)⟩ = ∑
𝜎

𝑓(𝜎)𝑃𝜎(𝑡). (4.21)

Hence, the master equation implies3

d
d𝑡

⟨𝑓(𝜎)⟩ = ∑
𝜎

𝑓(𝜎) d
d𝑡

𝑃𝜎(𝑡), (4.22a)

= ∑
𝜎

𝑓(𝜎)[
𝑁

∑
𝑖=1

𝑤𝑖(𝜎𝑖)𝑃𝜎𝑖 − 𝑤𝑖(𝜎)𝑃𝜎]. (4.22b)

Nevertheless, we notice that

∑
𝜎

𝑓(𝜎)[
𝑁

∑
𝑖=1

𝑤𝑖(𝜎)𝑃𝜎] =
𝑁

∑
𝑖=1

∑
𝜎

𝑓(𝜎)𝑤𝑖(𝜎)𝑃𝜎, (4.23a)

=
𝑁

∑
𝑖=1

⟨𝑓(𝜎)𝑤𝑖(𝜎)⟩ . (4.23b)

3Notice the allowed states of the system do not change with time. The probabilities do.
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Furthermore,

∑
𝜎

𝑓(𝜎)[
𝑁

∑
𝑖=1

𝑤𝑖(𝜎𝑖)𝑃𝜎𝑖] =
𝑁

∑
𝑖=1

∑
𝜎

𝑓(𝜎)𝑤𝑖(𝜎𝑖)𝑃𝜎𝑖 , (4.24a)

=
𝑁

∑
𝑖=1

∑
𝜎𝑖

𝑓(𝜎𝑖)𝑤𝑖(𝜎)𝑃𝜎, (4.24b)

=
𝑁

∑
𝑖=1

∑
𝜎

𝑓(𝜎𝑖)𝑤𝑖(𝜎)𝑃𝜎, (4.24c)

=
𝑁

∑
𝑖=1

⟨𝑓(𝜎𝑖)𝑤𝑖(𝜎)⟩ , (4.24d)

where we used the fact that, if we are summing over all configurations, it doesn’t matter
whether we tag them as 𝜎 or 𝜎𝑖.

Through this procedure, we find that

d
d𝑡

⟨𝑓(𝜎)⟩ =
𝑁

∑
𝑖=1

⟨(𝑓(𝜎𝑖) − 𝑓(𝜎))𝑤𝑖(𝜎)⟩ . (4.25)

For concreteness, let us consider, say, 𝑓(𝜎) = 𝜎𝑘. Then 𝑓(𝜎𝑖) = −𝜎𝑘 if 𝑘 = 𝑖 and
𝑓(𝜎𝑖) = +𝜎𝑘 otherwise. Therefore,

d
d𝑡

⟨𝜎𝑘⟩ =
𝑁

∑
𝑖=1

⟨(𝑓(𝜎𝑖) − 𝑓(𝜎))𝑤𝑖(𝜎)⟩ , (4.26a)

= ⟨(−𝜎𝑘 − 𝜎𝑘)𝑤𝑘(𝜎)⟩ + ∑
𝑖≠𝑘

⟨(𝜎𝑘 − 𝜎𝑘)𝑤𝑖(𝜎)⟩ , (4.26b)

= −2 ⟨𝜎𝑘𝑤𝑘(𝜎)⟩ . (4.26c)

However, for a homogeneous system, any site can be used to compute the magnetization
per site, and hence we can simply write 𝑚 = ⟨𝜎𝑘⟩. Therefore,

d𝑚
d𝑡

= −2 ⟨𝜎𝑘𝑤𝑘(𝜎)⟩ . (4.27)

So far our derivation has been very general. We can now specify to the majority vote
model by imposing Eq. (4.15) on the previous page. This allows us to write Eq. (4.27) as

d𝑚
d𝑡

= − ⟨𝜎𝑘⟩ + (1 − 2𝑓) ⟨𝜎2
𝑘 sign (∑

𝛿
𝜎𝑘+𝛿)⟩ , (4.28a)

= −𝑚 + (1 − 2𝑓) ⟨sign (∑
𝛿

𝜎𝑘+𝛿)⟩ , (4.28b)

for 𝜎2
𝑘 = 1.
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We can’t compute the expectation value on Eq. (4.28) exactly, which is why we’ll need
an approximation. The same interaction that makes the problem interesting by giving it
a phase transition also prevents it from being solved exactly. Nevertheless, we can already
tell that for the NESS we’ll have

𝑚 = (1 − 2𝑓) ⟨sign (∑
𝛿

𝜎𝑘+𝛿)⟩ . (4.29)

To approximate the expression we shall write it as

⟨sign (∑
𝛿

𝜎𝑘+𝛿)⟩ = ∑
𝜎𝑘+𝛿

sign (∑
𝛿

𝜎𝑘+𝛿)𝑃(𝜎𝑘+1, 𝜎𝑘+2, 𝜎𝑘+3, 𝜎𝑘+4), (4.30)

where we assumed the system to be on a regular square lattice with periodic boundary
conditions (just like the one used by M. J. de Oliveira 1992), implying each site has four
neighbors. If we ignore correlations, we can write

𝑃(𝜎𝑘+1, 𝜎𝑘+2, 𝜎𝑘+3, 𝜎𝑘+4) ≈ 𝑃(𝜎𝑘+1)𝑃 (𝜎𝑘+2)𝑃 (𝜎𝑘+3)𝑃 (𝜎𝑘+4), (4.31)

from which it follows that

⟨sign (∑
𝛿

𝜎𝑘+𝛿)⟩ ≈ ∑
𝜎𝑘+𝛿

sign (∑
𝛿

𝜎𝑘+𝛿)𝑃(𝜎𝑘+1)𝑃 (𝜎𝑘+2)𝑃 (𝜎𝑘+3)𝑃 (𝜎𝑘+4). (4.32)

Since the system is homogeneous, the problem has been reduced to counting how many
options lead to each possible value of sign (∑𝛿 𝜎𝑘+𝛿). This is just a combinatorics problem,
and we find that

⟨sign (∑
𝛿

𝜎𝑘+𝛿)⟩ ≈
4

∑
𝑛=3

(4
𝑛

)𝑃 𝑛
+ 𝑃 4−𝑛

− −
4

∑
𝑛=3

(4
𝑛

)𝑃 𝑛
− 𝑃 4−𝑛

+ . (4.33)

If we now recall that

𝑃+ + 𝑃− = 1 and 𝑃+ − 𝑃− = 𝑚, (4.34)

we’ll see that we are able to express ⟨sign (∑𝛿 𝜎𝑘+𝛿)⟩ in terms of 𝑚 only. If we bring
together all of the previous expressions, we’ll find Eq. (4.16) on page 120.

Notice that the same computation could be used for lattices more complex than the
square lattice. Furthermore, the same procedure could be applied for other transition
rates and lead to similar expressions, which is a trait of universality. It is also important
to notice that, as often happens with mean field theories, the predictions for the critical
point and critical exponents do not match the actual values (obtained numerically by
M. J. de Oliveira 1992). In particular, for systems with up-down symmetry, we always
find 𝛽 = 1

2 .
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We can modify Eq. (4.33) for the more general case in which the site 𝑖 has 𝑘 neighbors
instead of only 4. Then we get

⟨sign (∑
𝛿

𝜎𝑖+𝛿)⟩ ≈
𝑘

∑
𝑛=⌈ 𝑘+1

2 ⌉

(𝑘
𝑛

)𝑃 𝑛
+ 𝑃 𝑘−𝑛

− −
𝑘

∑
𝑛=⌈ 𝑘+1

2 ⌉

(𝑘
𝑛

)𝑃 𝑛
− 𝑃 𝑘−𝑛

+ , (4.35)

where ⌈𝑥⌉ is the ceiling function, which yields the smallest integer larger than or equal to
𝑥 (⌈2⌉ = 2, ⌈2.1⌉ = 3, etc).

If we use Eq. (4.34) on the preceding page on Eqs. (4.28) and (4.35) on page 122
and on this page we find that4

d𝑚
d𝑡

= −𝑚 + (1 − 2𝑓)
𝑘

∑
𝑛=⌈ 𝑘+1

2 ⌉

(𝑘
𝑛

)[(1 + 𝑚
2

)
𝑛
(1 − 𝑚

2
)

𝑘−𝑛
− (1 − 𝑚

2
)

𝑛
(1 + 𝑚

2
)

𝑘−𝑛
].

(4.36)
For arbitrary 𝑘 we’ll have the general behavior with 𝛽 = 1

2 , since near the critical
point 𝑚 is small and we’ll be able to neglect higher order terms. For this model, varying
𝑘 can’t change the critical exponents (they are always those of mean field theory) nor the
order of the transition (higher powers of 𝑚 might lead to first-order transitions under
particular choices of signals on each term that won’t occur in here). However, the critical
point 𝑓𝑐 does depend on 𝑘. Away from the critical point, 𝑘 also changes the behavior of
the system, since it leads to higher powers of 𝑚 in Eq. (4.36).

The fact that mean field theory often predicts the wrong critical exponents might
make it seem odd that we’ve been using it so much. However, it is important to keep in
mind that it is often impossible, or at the very least very difficult, to obtain exact results
for interacting systems. MFT methods allow us to obtain a general, qualitative idea of
the behavior of a system before diving into other techniques, such as numerical methods.
Numerical methods can introduce other difficulties, and knowing the qualitative results of
mean field theory is a way of getting “hints” at whether our numerical implementation is
correct or not.

Dependence of the Critical Point with the Number of Neighbors

To see a bit of the dependence of the critical value 𝑓𝑐 with 𝑘, we start by noticing from
Eq. (4.17) on page 120 that 𝑓𝑐 = 1

6 for 𝑘 = 4. For 𝑘 = 8 one can show that

d𝑚
d𝑡

= (19 − 70𝑓)
16

𝑚 − 35(1 − 2𝑓)
16

𝑚3 + 21(1 − 2𝑓)
16

𝑚5 − 5(1 − 2𝑓)
16

𝑚7. (4.37)

Close to the critical point (|𝑚| ≪ 1), we can neglect the higher order terms and find the
steady state solutions

𝑚 ≈ {
±√ 19−70𝑓

35(1−2𝑓) , if 𝑓 ≤ 19
70 ,

0, if 𝑓 ≥ 19
70 ,

(4.38)

4I believe Eq. (4.34) on the previous page only holds if the lattice is regular. Otherwise, it might be
harder to relate the magnetization to the probabilities on each site. Hence, I believe Eq. (4.36) also only
holds for regular lattices.
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and hence 𝑓𝑐 = 19
70 .

Notice then that 𝑓𝑐 seems to increase with 𝑘. 𝑓𝑐 does typically grow monotonically
with 𝑘. Furthermore, notice this means 𝑓𝑐 is not universal.

For large 𝑘, we can obtain approximate expressions for 𝑓𝑐 as a function of 𝑘. To do so,
we’ll start again from Eq. (4.35). Notice it is composed of two binomial distributions. For
large values of 𝑘, we can approximate these distributions by Gaussian distributions (see
Salinas 2001, Sec. 1.5). Hence, we get

⟨sign (∑
𝛿

𝜎𝑖+𝛿)⟩ ≈ 1√
2𝜋𝜎2

∫
𝑘

𝑘
2

𝑒− (𝜉−𝑘𝑃+)
2𝜎2 d𝜉 − 1√

2𝜋𝜎2
∫

𝑘

𝑘
2

𝑒− (𝜉−𝑘𝑃−)
2𝜎2 d𝜉 , (4.39)

where the standard deviation 𝜎 is such that 𝜎2 = 𝑘𝑃+𝑃−.
We can express the results of such integrals in terms of the error function, defined by

erf(𝑥) = 2√
𝜋

∫
𝑥

0
𝑒−𝜉2 d𝜉 . (4.40)

We find that

⟨sign (∑
𝛿

𝜎𝑖+𝛿)⟩ ≈ 1
2

[ erf (
𝑘(1 − 𝑃+)√

2𝜎2
) − erf (

𝑘(1
2 − 𝑃+)
√

2𝜎2
)

− erf (𝑘(1 − 𝑃−)√
2𝜎2

) + erf (
𝑘(1

2 − 𝑃−)
√

2𝜎2
)]. (4.41)

Let us define 𝑦 = 𝑃+ − 1
2 . Since 0 ≤ 𝑃+ ≤ 1, −1

2 ≤ 𝑦 ≤ +1
2 . Notice that

𝑘(1 − 𝑃+)√
2𝜎2

=
𝑘(1 − 𝑃+)
√2𝑘𝑃+𝑃−

, (4.42a)

=
𝑘(1

2 − 𝑦)

√2𝑘(1
2 + 𝑦)(1

2 − 𝑦)
, (4.42b)

=
√

2𝑘(1
2

− 𝑦)(1 + 2𝑦2) + 𝒪(𝑦4). (4.42c)

Similarly,

𝑘(1
2 − 𝑃+)
√

2𝜎2
= −

√
2𝑘𝑦(1 + 2𝑦2) + 𝒪(𝑦4), (4.43)

𝑘(1 − 𝑃−)√
2𝜎2

=
√

2𝑘(1
2

+ 𝑦)(1 + 2𝑦2) + 𝒪(𝑦4), (4.44)

and

𝑘(1
2 − 𝑃−)
√

2𝜎2
=

√
2𝑘𝑦(1 + 2𝑦2) + 𝒪(𝑦4). (4.45)
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Using these approximations, we find that

⟨sign (∑
𝛿

𝜎𝑖+𝛿)⟩ ≈ 1
2

[erf (
√

2𝑘(1
2

− 𝑦)) − erf (
√

2𝑘(1
2

+ 𝑦)) + 2 erf (
√

2𝑘𝑦)]

(4.46)
where we used the fact that the error function is odd, and hence

erf (−
√

2𝑘𝑦) = − erf (
√

2𝑘𝑦). (4.47)

Notice now that our values of interest for 𝑦 are typically such that |𝑦| < 1
2 , since the

extrema correspond to the trivial cases with 𝑃± = 1 and 𝑃∓ = 0, leading to 𝑚 = ±1.
Near the critical point, which is what we want to compute, |𝑚| ≪ 1. Due to this, notice
that

erf (
√

2𝑘(1
2

− 𝑦)) − erf (
√

2𝑘(1
2

+ 𝑦)) = 2√
𝜋

∫
√

2𝑘( 1
2 −𝑦)

√
2𝑘( 1

2 +𝑦)
𝑒−𝜉2 d𝜉 . (4.48)

Since we are assuming |𝑦| < 1
2 , this integration region is always bounded away from the

origin. Since 𝑘 is large, this means we’re integrating over just a piece of the Gaussian’s
tail, and avoiding the center, which corresponds to most of the Gaussian’s area. Notice
that if |𝑦| = 1

2 , then the integral necessarily goes over the origin.
erf (

√
2𝑘𝑦), on the other hand, always includes the center, because

erf (
√

2𝑘𝑦) = 2√
𝜋

∫
√

2𝑘𝑦

0
𝑒−𝜉2 d𝜉 . (4.49)

Hence, for large 𝑘 and |𝑦| < 1
2 , we have

erf (
√

2𝑘(1
2

− 𝑦)) − erf (
√

2𝑘(1
2

+ 𝑦)) + 2 erf (
√

2𝑘𝑦) ≈ 2 erf (
√

2𝑘𝑦). (4.50)

One can also check this graphically by plotting both sides of the equation as functions of
𝑘 and varying 𝑦.

The upshot of this discussion is that, for large 𝑘 and |𝑦| < 1
2 ,

⟨sign (∑
𝛿

𝜎𝑖+𝛿)⟩ ≈ erf (
√

2𝑘𝑦). (4.51)

If we recover the definition of 𝑦 = 𝑃+ − 1
2 and remember Eqs. (4.28) and (4.34) on

page 122 and on page 123, then we find that

d𝑚
d𝑡

= −𝑚 + (1 − 2𝑓) erf (√𝑘
2

𝑚). (4.52)
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Therefore, the steady state solutions are given by

𝑚 = (1 − 2𝑓) erf (√𝑘
2

𝑚). (4.53)

With this expression we are able to find the critical point 𝑓𝑐. There are two main ways of
doing it. The first is to expand the error function to third order in 𝑚, which yields an
expansion analogous to the ones we’ve been dealing with so far. The other option is to
take a graphical approach and plot the function 𝑓(𝑚) = 𝑚 against the error function and
consider different values of 𝑓. Since the error function tends to ±1 at ±∞ and it is an
odd function, we’ll get a picture similar to Fig. 3.15 on page 91, allowing us to obtain the
stable values of 𝑚 and the critical point 𝑓𝑐. Notice the critical point is achieved when the
slope of (1 − 2𝑓) erf (√𝑘

2 𝑚) is 1 at the origin.
The result is

𝑓𝑐 = 1
2

− 1
2

√ 𝜋
2𝑘

. (4.54)

Notice that 𝑓𝑐 grows with 𝑘 for large 𝑘. For further details on the calculation of 𝑓𝑐, Prof.
Fiore recommended the papers by Chen et al. (2015) and J. Encinas et al. (2019).

Eq. (4.54) is expected to hold well for large 𝑘, so it is interesting to test it against
some of the values we already know. As we’ve mentioned before, 𝑓𝑐 = 1

6 ≈ 0.166 667 for
𝑘 = 4 and 𝑓𝑐 = 19

70 ≈ 0.271 429 for 𝑘 = 8. Eq. (4.54) yields 𝑓𝑐 ≈ 0.186 671 for 𝑘 = 4 and
𝑓𝑐 ≈ 0.278 443 for 𝑘 = 8, and hence we see the agreement did get better with larger 𝑘.
Using Mathematica, one can compute the values of 𝑓𝑐 for many different values of 𝑘 from
Eq. (4.36) on page 124. Using these computations and Eq. (4.54), one can produce a
graphic such as the one on Fig. 4.4 on the next page, which shows that Eq. (4.54) does
yield better results for larger values of 𝑘.

General “Up-Down” (ℤ2) Symmetry

The ideas we’ve been developing so far can also be applied to more general systems with
“up-down” (or, more technically, ℤ2) symmetry. Instead of choosing Eq. (4.15) on page 120
for the flipping transition rate, we could have taken a more general path and used

𝑤𝑖(𝜎) = 1
2

[1 − 𝑎𝜎𝑖𝑔(∑
𝛿

𝜎𝑖+𝛿)], (4.55)

which is an option chosen to resemble the majority vote model. 𝑎 plays the role of the
control parameter, and the function 𝑔 generalizes the previous role of the sign function.
The sum inside 𝑔 runs over spins in a matter determined by the interaction: it could be
over nearest neighbors, but could also pick up more or less neighbors, depending on the
details we’re interested in.

To ensure we get a ℤ2-symmetric theory, we must impose that 𝑔(−𝑥) = −𝑔(𝑥), i.e., 𝑔
is an odd function. Since the transition rate 𝑤𝑖(𝜎) must be positive and smaller than one,
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Figure 4.4: Comparison of the “exact” results for the critical point 𝑓𝑐 for varying values of 𝑘 and
the approximation for large values of 𝑘. The solid curve is the approximate result,
while the points are the “exact” value (computed only at integer values of 𝑘). The
“exact” values are computed from Eq. (4.36) on page 124, while the approximations
are given by Eq. (4.54) on the preceding page. Notice that the two methods yield
closer values for larger values of 𝑘, as expected.

we also need to impose that |𝑎𝑔(𝑥)| ≤ 1. Notice these conditions are met by the majority
vote model, for which 𝑎 = 1 − 2𝑓 and 𝑔 = sign.

Assuming 𝑔 is odd allows us to write it as

𝑔(𝑥) = |𝑔(𝑥)| sign(𝑥). (4.56)

From Eq. (4.26) on page 122 we then know that

d
d𝑡

⟨𝜎𝑖⟩ = −2 ⟨𝜎𝑖𝑤𝑖(𝜎)⟩ , (4.57a)

= − ⟨𝜎𝑖⟩ + 𝑎 ⟨∣𝑔(∑
𝛿

𝜎𝑖+𝛿)∣ sign (∑
𝛿

𝜎𝑖+𝛿)⟩ . (4.57b)

This expression holds exactly for all cases, but we can’t solve it exactly. How to proceed?
Noa et al. (2019) notice that while 𝑔 does affect the critical point, the critical exponents

should be independent of the details of the dynamics. Universality ensures us that they
are determined by broad factors such as symmetry and dimensionality, not by the detailed
choice of 𝑔. Hence, it is reasonable to replace 𝑔 by an “effective 𝑔” and write

⟨∣𝑔(∑
𝛿

𝜎𝑖+𝛿)∣ sign (∑
𝛿

𝜎𝑖+𝛿)⟩ → ̄𝑔 ⟨sign (∑
𝛿

𝜎𝑖+𝛿)⟩ . (4.58)
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From this point onward, the general system can be treated just like the majority model,
and we’ll eventually get to the critical behavior 𝑚 ∼ (𝑎 − 𝑎𝑐) 1

2 . For more details, see the
paper by Noa et al. (2019).

Entropy Production for the Majority Vote Model

While we mentioned a couple of times that the majority vote model violates the detailed
balance and has nonequilibrium steady states, we still haven’t shown it. A way of doing so
is by computing the entropy production for the system and noticing it is strictly positive,
apart from a few special cases. Let us now see how to do this. While our discussion will Check these

cases and
maybe rewrite
this phrase.

be focused on the majority vote model, it should be pointed out that a more general
analysis has been carried out by Noa et al. (2019).

The expression for the entropy production was given on Eq. (1.24) on page 9. However,
it is notably difficult to compute, since it requires knowledge of the probabilities for
the system. We do not know these probabilities. Nevertheless, at a steady state, the
entropy production equals the entropy flux, which admits the simpler expression given on
Eq. (1.32) on page 11. As we mentioned then, computing ensemble averages is particularly
easier, and hence we can compute the entropy flux 𝜙(𝑡) with Eq. (1.32) on page 11 and
then use that, in a steady state, the entropy production is given by5 Π(𝑡) = 𝜙(𝑡).

In the one-site dynamics approach we’ve been taking for the majority vote model,
Eq. (1.32) on page 11 becomes

𝜙 = 𝑘𝐵 ∑
𝜎

∑
𝑖

𝑤𝑖(𝜎) log 𝑤𝑖(𝜎)
𝑤𝑖(𝜎𝑖)

𝑃 (𝜎), (4.59)

where, as before, 𝜎 ≡ (𝜎1, … , 𝜎𝑁) and 𝜎𝑖 ≡ (𝜎1, … , 𝜎𝑖−1, −𝜎𝑖, 𝜎𝑖+1, … , 𝜎𝑁). For the
majority vote model, the transition rates are given by Eq. (4.15) on page 120, and hence

𝑤𝑖(𝜎)
𝑤𝑖(𝜎𝑖)

=
1 − (1 − 2𝑓)𝜎𝑖 sign (∑𝛿 𝜎𝑖+𝛿)

1 + (1 − 2𝑓)𝜎𝑖 sign (∑𝛿 𝜎𝑖+𝛿)
. (4.60)

By analyzing each of the six possible cases (𝜎𝑖 = ±1, sign (∑𝛿 𝜎𝑖+𝛿) = −1, 0, +1), one
can notice that

log 𝑤𝑖(𝜎)
𝑤𝑖(𝜎𝑖)

= −𝜎𝑖 sign (∑
𝛿

𝜎𝑖+𝛿) log 1 − 𝑓
𝑓

. (4.61)

With this result, we can see that the entropy flux for the majority vote model becomes

𝜙 = −𝑘𝐵 log 1 − 𝑓
𝑓

∑
𝜎

∑
𝑖

𝑤𝑖(𝜎)𝜎𝑖 sign (∑
𝛿

𝜎𝑖+𝛿)𝑃(𝜎), (4.62a)

= −𝑘𝐵 log 1 − 𝑓
𝑓

∑
𝑖

⟨𝑤𝑖(𝜎)𝜎𝑖 sign (∑
𝛿

𝜎𝑖+𝛿)⟩ . (4.62b)

5We’ll denote the entropy production by Π for now to avoid confusing it with the spin variables 𝜎.
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However,

𝑤𝑖(𝜎)𝜎𝑖 sign (∑
𝛿

𝜎𝑖+𝛿) = 1
2

[1 − (1 − 2𝑓)𝜎𝑖 sign (∑
𝛿

𝜎𝑖+𝛿)]𝜎𝑖 sign (∑
𝛿

𝜎𝑖+𝛿),

(4.63a)

= 1
2

[𝜎𝑖 sign (∑
𝛿

𝜎𝑖+𝛿) − (1 − 2𝑓) sign2 (∑
𝛿

𝜎𝑖+𝛿)],

(4.63b)

which implies

𝜙 = −𝑘𝐵
2

log 1 − 𝑓
𝑓

∑
𝑖

[⟨𝜎𝑖 sign (∑
𝛿

𝜎𝑖+𝛿)⟩ − (1 − 2𝑓) ⟨sign2 (∑
𝛿

𝜎𝑖+𝛿)⟩].

(4.64)
This is an exact expression for the majority vote model. Nevertheless, we can’t compute
it exactly. Notice also that, in the same language of Section 1, log 1−𝑓

𝑓 plays the role of a
force, while the sum is a flux.

To use Eq. (4.64) on the following page, we must figure out a way of approximating
the ensemble averages it requires. Using a mean field approach, we can write

⟨𝜎𝑖 sign (∑
𝛿

𝜎𝑖+𝛿)⟩ = ⟨𝜎𝑖⟩ ⟨sign (∑
𝛿

𝜎𝑖+𝛿)⟩ , (4.65a)

= 𝑚2

(1 − 2𝑓)
, (4.65b)

where we also used Eq. (4.29) on page 123.
As for ⟨sign2 (∑𝛿 𝜎𝑖+𝛿)⟩, there are two possibilities. One of them is to ignore correla-

tions just like we did to get to Eq. (4.35) on page 124 and find that

⟨sign2 (∑
𝛿

𝜎𝑖+𝛿)⟩ ≈
𝑘

∑
𝑛=⌈ 𝑘+1

2 ⌉

(𝑘
𝑛

)𝑃 𝑛
+ 𝑃 𝑘−𝑛

− +
𝑘

∑
𝑛=⌈ 𝑘+1

2 ⌉

(𝑘
𝑛

)𝑃 𝑛
− 𝑃 𝑘−𝑛

+ . (4.66)

This is a good approach for small 𝑘, but we might remember that sign2 will vanish only in
the particular case in which half of the neighbors are −1, and half are +1. Hence, there
are many more situations in which sign2 evaluates to +1. For large 𝑘, we can then simply
approximate ⟨sign2 (∑𝛿 𝜎𝑖+𝛿)⟩ ≈ 1.

For large 𝑘, we can then use Eqs. (4.64) and (4.65) and ⟨sign2 (∑𝛿 𝜎𝑖+𝛿)⟩ ≈ 1 at a
steady state to obtain

Π = 𝜙 = −𝑁𝑘𝐵
2

log 1 − 𝑓
𝑓

( 𝑚2

1 − 2𝑓
− 1 + 2𝑓), (4.67)

where 𝑁 is the number of sites.
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In mean field theory, we know that close to the critical point 𝑚2 behaves according to
𝑚2 ≈ 12

𝑘 (𝑓𝑐 − 𝑓) (for 𝑓 < 𝑓𝑐, which follows from Eq. (4.53) on page 127) or 𝑚2 ≈ 0 (for
𝑓 > 𝑓𝑐). Therefore, we find that close to the critical point

Π = {
𝑁𝑘𝐵(1−2𝑓)

2 log(1−𝑓
𝑓 )(1 + 12(𝑓−𝑓𝑐)

𝑘(1−2𝑓)2 ), for 𝑓 ≤ 𝑓𝑐,
𝑁𝑘𝐵(1−2𝑓)

2 log(1−𝑓
𝑓 ), for 𝑓 ≥ 𝑓𝑐.

(4.68)

Notice the entropy production is continuous at the critical point, with

Π𝑐 = 𝑁𝑘𝐵(1 − 2𝑓𝑐)
2

log(1 − 𝑓𝑐
𝑓𝑐

) > 0, (4.69)

where equality could hold if 𝑓𝑐 = 1
2 . However, by looking at Eq. (4.54) on page 127, we

see this won’t happen at finite values of 𝑘.
While the entropy production is continuous, its derivative with respect to 𝑓 is not.

Notice that

Π′
𝑐 ≡ dΠ

d𝑓
∣
𝑓=𝑓𝑐

= {
−𝑁𝑘𝐵

2 [ 1−2𝑓𝑐
𝑓𝑐(1−𝑓𝑐) + 2(𝑘−6−2𝑘𝑓𝑐)

𝑘(1−2𝑓𝑐) log(1−𝑓𝑐
𝑓𝑐

)], for 𝑓 → 𝑓−
𝑐 ,

−𝑁𝑘𝐵
2 [ 1−2𝑓𝑐

𝑓𝑐(1−𝑓𝑐) + 2 log(1−𝑓𝑐
𝑓𝑐

)], for 𝑓 → 𝑓+
𝑐 .

(4.70)

Hence,

lim
𝑓→𝑓+

𝑐
Π(𝑓) − lim

𝑓→𝑓−
𝑐

Π(𝑓) = −6𝑁𝑘𝐵
𝑘

1
1 − 2𝑓𝑐

log(1 − 𝑓𝑐
𝑓𝑐

). (4.71)

This discontinuity is associated with the critical exponent 𝛼 = 0.
As we previously mentioned, the analysis that we did for the majority vote model

can be done in more general settings, as was done by Noa et al. (2019) for the general
case of a system with ℤ2 symmetry. It is also possible to discuss discontinuous phase
transitions, in which case the entropy production will have discontinuities as well and
signal the hysteretic curve.

4.3 Monte Carlo Methods

As we have seem repeatedly at this point, exact solutions in Statistical Mechanics are
difficult to obtain, when possible. Hence, computational techniques have become an
omnipresent tool in modern analyses. We shall discuss first how they occur in equilibrium
systems before moving on to non-equilibrium studies.

Our main concern is that, in general, we won’t be able to enumerate all of the possible
configurations of a system. This is only achievable for small or relatively simple systems.
For equilibrium systems, notice this also means it is particularly complicated to compute
the partition function, and hence we don’t know exactly what are the probabilities of
each configuration. Similarly, in non-equilibrium systems, solving the master equation is
not necessarily an easy task.

In spite of these difficulties, we often might have an idea of proportionality between
different probabilities. In equilibrium systems, for example, we do know that the probabil-
ities are given by 𝑝𝑖 = 𝑒−𝛽𝐸𝑖

𝑍 . Hence, even though we do not know 𝑍, we can distinguish
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between more and less important configurations. Furthermore, at the end of day we are
focused on computing expectation values, not the probabilities themselves. Hence, a trick
we can employ is to pick a subset of configurations in such a way that it is representative of
the whole ensemble, and use this subset to compute the averages we’re actually concerned
with.

To exemplify our approach, we’ll pick the Ising model, the simplest model exhibiting a
phase transition with spontaneous symmetry breaking. It has the advantage that it does
have an exact solution at zero field for 𝑑 = 2 obtained by Onsager (1944). Therefore, for
this particular model, we have the privilege of being able to compare our results with the
exact solution. This won’t be available in other situations.

Metropolis Algorithm for the Ising Model

Our approach to the Ising model will be to follow a procedure nowadays known as the
Metropolis (Metropolis et al. 1953)—or Metropolis–Hastings (Hastings 1970), for a more
general case—algorithm. We’ll follow Prof. Fiore’s slideshows, supplemented by the books
by D. P. Landau and Binder (2021, Sec. 4.2) and Pathria and Beale (2022, Sec. 16.2).

We want to use the Gibbs distribution to obtain a representative collection of con-
figurations, in the sense that it allows us to obtain reliable results for the averages we’d
ideally compute from the whole ensemble. Using the Gibbs distribution to obtain the
collection means that “instead of choosing configurations randomly, then weighting them
with exp(− 𝐸

𝑘𝐵𝑇), we choose configurations with a probability exp(− 𝐸
𝑘𝐵𝑇) and weight

them evenly” (Metropolis et al. 1953, p. 1088).
To sort configurations with a Gibbsian probability is still difficult, since we don’t know

the partition function. However, our trick will be to start from some initial state 𝜎0 and
impose detailed balance to determine the probability of obtaining a new state 𝜎1. One
then iterates the process to obtain 𝜎2, 𝜎3, and so on, using a Markov chain to get the
collection of representative configurations. Mathematically, the clever trick behind using
this method comes from the fact that detailed balance reads

𝑊𝑛𝑚𝑃𝑚 = 𝑊𝑚𝑛𝑃𝑛, (4.72a)

𝑊𝑛𝑚
𝑒− 𝐸𝑚

𝑘𝐵𝑇

𝑍
= 𝑊𝑚𝑛

𝑒− 𝐸𝑛
𝑘𝐵𝑇

𝑍
, (4.72b)

𝑊𝑛𝑚 = 𝑊𝑚𝑛𝑒− (𝐸𝑛−𝐸𝑚)
𝑘𝐵𝑇 , (4.72c)

and hence the ratios between transition rates do not depend on the partition function.
We can then simply set

𝑊𝑛𝑚 = {𝑒− (𝐸𝑛−𝐸𝑚)
𝑘𝐵𝑇 , for 𝐸𝑛 ≥ 𝐸𝑚,

1, for 𝐸𝑛 ≤ 𝐸𝑚.
(4.73)

This isn’t the only possible choice, but it is (a simplified version of) the one made by
Metropolis et al. (1953). Another option goes by the name of “Glauber dynamics” (Glauber
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1963), and consists in picking

𝑊𝑛𝑚 = 1
2

[1 − tanh(𝐸𝑛 − 𝐸𝑚
2𝑘𝐵𝑇

)]. (4.74)

D. P. Landau and Binder (2021, p. 84) mentions that both the Glauber and Metropolis
transition rates usually lead to the same results, but at high temperatures the Metropolis
transition rate approaches 𝑊𝑛𝑚 → 1 for all energy differences. Hence, instead of getting
an ergodic evolution, the system simply keeps flipping between two configurations. This
doesn’t happen under Glauber dynamics, since it leads to 𝑊𝑛𝑚 → 1

2 at high temperatures,
preserving ergodicity.

The general procedure for the Metropolis algorithm is then given by the following
recipe:

i. choose an initial state 𝜎0, which ideally should be a “typical state”, so the algorithm
converges faster;

ii. choose a spin 𝑖 and compute the resulting energy difference of flipping 𝑖, i.e., compute
Δ𝐸 for 𝜎0 → 𝜎𝑖

0;

iii. if the energy diminishes with the transition, set 𝜎1 = 𝜎𝑖
0;

iv. if the energy increases with the transition, sort uniformly a random number 𝑟 ∈ (0, 1).
If 𝑟 < 𝑒−𝛽Δ𝐸, set 𝜎1 = 𝜎𝑖

0, otherwise set 𝜎1 = 𝜎0;

v. move to the next spin and repeat the process to obtain 𝜎2, and so on.

This process should be repeated enough times such that the system eventually reaches
equilibrium. This might take several iterations. In this Monte Carlo approach, the natural
unit of time is a “Monte Carlo sweep” (Pathria and Beale 2022) or a “Monte Carlo
step/site” (D. P. Landau and Binder 2021), which corresponds to performing an iteration
for each site in the system. If the sequence of sites is chosen randomly—which might be
a better choice to ensure detailed balance (Pathria and Beale 2022, p. 664)—each site
might be updated more than once or not at all during a single sweep. If one updates the
spins sequentially, one will update each site once per sweep—this improves performance,
but violates the exact detailed balance.

Once we have a good amount of states that are in equilibrium, we can use them as
representatives of the whole ensemble, and compute averages by considering the collection
of states with an uniform distribution.

Algorithm for the Majority Vote Model

The majority vote model can be treated in a completely analogous manner, with the
modification that the probability for a spin flip is now given by Eq. (4.15) on page 120
rather than by the Metropolis transition rate.

The typical process is now given by
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i. choose an initial state 𝜎0, which ideally should be a “typical state”, so the algorithm
converges faster;

ii. choose a spin 𝑖 and compute the “votes” of its neighbors;

iii. sort uniformly a random number 𝑟 ∈ (0, 1). If 𝑟 < 𝑤𝑖(𝜎) as given by Eq. (4.15) on
page 120, set 𝜎1 = 𝜎𝑖

0, otherwise set 𝜎1 = 𝜎0;

iv. move to the next spin and repeat the process to obtain 𝜎2, and so on.

A numerical analysis of the majority vote model on a square lattice has been carried
out in this manner by M. J. de Oliveira (1992), to which we refer to for further details.

Critical Behavior from Numerical Simulations

Once we have implemented a numerical simulation, how can we use it to obtain the
critical exponents and critical point for the model? This question is not trivial, because
the phase transition can only happen in the thermodynamic limit, which means we can’t
even tell whether the phase transition is continuous or discontinuous. For finite systems,
the partition function is always analytic, and hence there won’t be any divergences when
simulating a system in a lattice. Nevertheless, we can extract critical data from simulations.
The main technique is based on finite-size scaling theory (Binder 1992).

Denoting 𝑡 = 𝑇 −𝑇𝑐
𝑇𝑐

, we know the correlation length of the system, 𝜉, scales as 𝜉 ∼ |𝑡|−𝜈

(Eq. (3.34) on page 86). However, in a finite system, the system’s size 𝐿 limits the
correlation length. If 𝐿 ≫ 𝜉, then the system is much larger than the correlation lengths,
and we do not expect the finiteness to be much relevant. Nevertheless, for 𝐿 ≪ 𝜉, the
critical behavior will be influenced by the fact we’re working in a finite lattice.

Cardy (1988) notes that in a system there are, in principle, three relevant length scales.
In addition to the correlation length 𝜉 and the system size 𝐿, there is also the microscopic
scale 𝑎 determining the typical range of the interactions. The finite-size scaling hypothesis
will be for us to assume that, near this critical point, this scale is not relevant. Hence, close
to the critical point, we should be able to encode the dimensionless scale dependencies in
the quantity 𝐿

𝜉 ∼ 𝐿|𝑡|𝜈. Or, equivalently, in 𝐿 1
𝜈 |𝑡|.

With this in mind, notice we can write, e.g., the finite-size magnetization 𝑚𝐿 for 𝑡 < 0
as

𝑚𝐿 ∼ |𝑡|𝛽, (4.75a)

∼ 𝜉− 𝛽
𝜈 , (4.75b)

𝑚𝐿 = 𝜉− 𝛽
𝜈 𝑓(𝐿

𝜉
), (4.75c)

= 𝐿− 𝛽
𝜈 ̃𝑓(𝐿 1

𝜈 |𝑡|), (4.75d)

for some function 𝑓 (or ̃𝑓, depending on which expression we prefer). Similarly, the
susceptibility is given by

𝜒𝐿 = 𝜉− 𝛾
𝜈 𝑔(𝐿

𝜉
) = 𝐿− 𝛾

𝜈 ̃𝑔(𝐿 1
𝜈 |𝑡|). (4.76)
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At 𝑡 = 0—i.e., at the critical point—we get

𝑚𝐿 = 𝐿− 𝛽
𝜈 ̃𝑓(0), and 𝜒𝐿 = 𝐿− 𝛾

𝜈 ̃𝑔(0), (4.77)

meaning that log-log graphs of 𝑚𝐿 and 𝜒𝐿 against 𝐿 are sufficient to yield the critical
exponents 𝛽

𝜈 and 𝛾
𝜈 .

We still need to be able to pinpoint the critical point. To do this, let us first notice
that Eq. (4.75) suggests

𝑚2
𝐿 = 𝐿− 2𝛽

𝜈 �̃�(𝐿 1
𝜈 |𝑡|), (4.78)

and

𝑚4
𝐿 = 𝐿− 4𝛽

𝜈 ̃𝑈(𝐿 1
𝜈 |𝑡|). (4.79)

Hence, we can define the reduced fourth cumulant

𝑈𝐿 = 1 −
⟨𝑚4

𝐿⟩
3 ⟨𝑚2

𝐿⟩2 = 1 −
̃𝑈(𝐿 1

𝜈 |𝑡|)

3�̃�(𝐿 1
𝜈 |𝑡|)

2 , (4.80)

which is convenient because, in criticality, it does not depend on the scale. Indeed, at
𝑡 = 0 we have

𝑈𝐿∣
𝑡=0

= 𝑈0 = 1 −
̃𝑈(0)

3�̃�(0)2 . (4.81)

For the Ising model, 𝑈0 ≈ 0.61.
A different way of arguing for these expressions is to prescribe a scaling law for the

probability distribution itself (M. J. de Oliveira 1992, Eq. (9)) and using it to compute
the averages of interest.

Simulating the Ising Model

Using the previous sections, one can make a simulation of the Ising model.
Since the model is ℤ2 symmetric, the late-time behavior might tend to either positive

or negative magnetization. Hence, it is more interesting for us to compute ⟨|𝑚|⟩, so the
model’s symmetry doesn’t interfere in our analysis of how the magnetization is approaching
zero. The numerical procedure to compute ⟨|𝑚|⟩ is then to, for each microstate selected
with the Metropolis algorithm, compute the sum of all spins and then take the absolute
value of this sum. We then average this quantity over all states obtained through the
Metropolis sampling.

For comparison purposes, we quote the exact result for the magnetization (e.g., Kardar
2007a, Eq. (7.84))

𝑚 = [1 − csch4 2𝐽
𝑘𝐵𝑇

]
1
8

. (4.82)
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Similar methods allow us to compute the susceptibility and the reduced fourth cumulant
𝑈𝐿. The susceptibility is given by Eq. (3.28) on page 85, which in our present notation
can be written as

𝜒 = 𝐿2

𝑘𝐵𝑇
(⟨𝑚2⟩ − ⟨|𝑚|⟩2). (4.83)

Notice that Eq. (3.28) on page 85 employed the extensive magnetization, while Eq. (4.83)
employs the magnetization per site, which explains the differing factors of 𝐿. 𝑈𝐿 is given
by Eq. (4.80) on the previous page.

It is important to notice that the first bunch of MC sweeps should be discarded, as
they are not yet representative of the sample we’re interested in. This is depicted on
Fig. 4.5, which shows how the average value of the magnetization changes with different
sample sizes at 𝑘𝐵𝑇

𝐽 = 2.269. Each of them starts at a random initial condition. Notice
that we need a large sample for the first random correlations to vanish. There is a different
behavior on each lattice size, but this is expected: since the chosen temperature is close
to the critical point, the correlation length is diverging, and the finite size effects are very
relevant.

100 101 102 103 104 105 106 107

MC sweeps

exact

0

0.25

0.5

0.75

1

⟨|𝑚
|⟩

𝐿
5
10
20
40
80

Figure 4.5: Evolution of the sample average for the magnetization for different lattice sizes of
the Ising model at 𝑘𝐵𝑇

𝐽 = 2.269. Each lattice starts at a randomly chosen initial
condition. Notice that the first sweeps are not representative of the sample, and hence
need to be dropped. Due to the temperature chosen being close to the critical point,
the correlation length is diverging and it is not surprising to notice that different
lattice sizes are converging to different values as they thermalize.

We are interested in doing the simulations for many different temperatures, and hence
making very long runs such as the ones on Fig. 4.5 is not practical. A way of improving it
is to set the initial condition for the lowest temperature of each site as being composed
of only up spins. This is a typical configuration for low temperatures, since at low
temperatures the lattice presents ordered phases. We then evolve this initial condition
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and use the last configuration for this temperature as the initial condition for the next one.
Hence, rather than a completely random configuration, the next temperature is starting
at a configuration that should at least slightly resemble a typical configuration.

For our purposes, we first need to obtain an estimate of the critical temperature. Only
with such an estimate we can compute the critical exponents. For this, we will use a
simulation for 𝐿 = 5, 10, 20, 40, and 80. In all cases, we’ll consider 𝐽

𝑘𝐵𝑇 ∈ (1.1, 3.4), with
0.1 steps. Based on Fig. 4.5, we shall perform 200 000 MC sweeps to get to thermalization
and then 200 000 more to probe the state space. The plots for magnetization, susceptibility
and the reduced fourth cumulant are shown on Fig. 4.6 on the next page.
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0.50

0.75

1.00

𝑚

𝐿
exact
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80

0
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𝜒

1.5 2.0 2.5 3.0
𝑘𝐵𝑇

𝐽
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10−3

10−1

1
−

3𝑈
𝐿 2

Figure 4.6: Magnetization, susceptibility, and the reduced fourth cumulant 𝑈𝐿 defined on Eq. (4.80)
on page 135 as functions of temperature. Notice that as 𝐿 increases, the magnetization
gets closer to the exact result. Furthermore, the peak in the susceptibility grows as 𝐿
grows.
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Fig. 4.6 shows clearly how increasing 𝐿 leads to a better qualitative agreement with
the exact solution for the magnetization. We also notice how the susceptibility spikes as
we increase 𝐿 and how there is indeed a point in which all curves of 𝑈𝐿 cross. For now,
we are interested in finding this point, so we can then use the value of the critical point to
obtain the critical exponents. Within the precision of our simulation (the 0.1 temperature
step), we have 𝑘𝐵𝑇𝑐

𝐽 = 2.3(1). The exact result is (Pathria and Beale 2022, p. 510)

𝑘𝐵𝑇𝑐
𝐽

= 2
log(1 +

√
2)

≈ 2.269 185, (4.84)

in agreement with what we just obtained.
To compute the critical exponents, it is ideal that we have a precise value of the critical

temperature, so we’ll improve our estimate by getting more points in the region close to
the critical point. Using the same procedure as before, we can get the graphs on Fig. 4.7
on page 139, which show that the critical point is at 𝑘𝐵𝑇𝑐

𝐽 = 2.27(1).

2.2 2.22 2.24 2.26 2.28 2.3
𝑘𝐵𝑇

𝐽

10−2

10−1

1
−

3𝑈
𝐿 2 𝐿

5
10
20
40
80

Figure 4.7: Reduced fourth cumulant 𝑈𝐿 defined on Eq. (4.80) on page 135 as a function of
temperature. Notice that, to the precision of our computations, the curves cross at
𝑘𝐵𝑇𝑐

𝐽 = 2.27(1).

For 𝛽, we have the plot and fit shown on Fig. 4.8. The fit leads us to 𝛽
𝜈 ≈ 0.134 252 06.

The exact values are 𝛽 = 1
8 = 0.125 and 𝜈 = 1 (Pathria and Beale 2022, p. 516). We could

improve our results by getting closer to the critical point, but to get a higher resolution
we also need to do more MC sweeps, for the transients get more relevant when we consider
two very similar temperatures.

The plot and fit for 𝛾 are shown on Fig. 4.9 on page 140. We get 𝛾
𝜈 ≈ 1.714 424 28,

while the the exact value is 𝛾 = 7
4 = 1.75 (Pathria and Beale 2022, p. 516).
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Figure 4.8: Dependence of the magnetization with the lattice size for 𝑘𝐵𝑇
𝐽 = 2.27. The fitted line

is given by 𝑚 = 𝐶𝐿− 𝛽
𝜈 , with 𝐶 ≈ 1.027 336 7 and 𝛽

𝜈 ≈ 0.134 252 06.
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Figure 4.9: Dependence of the susceptibility with the lattice size for 𝑘𝐵𝑇
𝐽 = 2.27. The fitted line

is given by 𝜒 = 𝐶𝐿
𝛾
𝜈 , with 𝐶 ≈ 0.091 217 59 and 𝛾

𝜈 ≈ 1.714 424 28.
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4.4 Chemical Reactions

As another application of nonequilibrium thermodynamics, let us also consider the study
of chemical reactions—phenomena where some components interact and lead to the
formation of some other components. The former are known as reactants, the latter as
products. Our interest is in describing the thermodynamics (in and out of equilibrium) of
how this happens.

First, however, we should do a brief discussion of chemical reactions in equilibrium
systems. We’ll follow the lecture notes by Prof. Fiore supplemented by the book by
M. J. de Oliveira (2013, Chap. 19). One can also see the book by Fermi (1956, Chap. VI).
For the nonequilibrium discussion, we’ll supplement Prof. Fiore’s notes with the works of
Tomé and M. J. de Oliveira (2015b, Chap. 10, 2018).

Equilibrium Thermochemistry

So far, we have mostly considered simple fluids with a single component. However, when
studying chemical reactions, we are interested in how many different components interact
with each other. In this situation, the Gibbs free energy takes the form

𝐺 = 𝐺(𝑇 , 𝑝, 𝑁1, … , 𝑁𝑟), (4.85)

where 𝑟 is the number of different species under consideration. As a consequence, it follows
that

d𝐺 = −𝑆 d𝑇 + 𝑉 d𝑝 +
𝑟

∑
𝑖=1

𝜇𝑟 d𝑁𝑖 , (4.86)

and we now have a different chemical potential for each species.
Typically, one will be interested in considering a chemical reaction happening at

constant temperature and pressure. One puts two chemical components on a vessel and
lets them interact at (say) atmospheric temperature and pressure. Hence, our case of
interest is mainly

d𝐺 =
𝑟

∑
𝑖=1

𝜇𝑟 d𝑁𝑖 . (4.87)

Suppose now we are interested in some generic chemical reaction

A −−⇀↽−− B + C. (4.88)

The double arrow means the system is in chemical equilibrium. We could alternatively
write the equation as

0 −−⇀↽−− −A + B + C, (4.89)

or even

0 −−⇀↽−− ∑
𝑗

𝜈𝑗A𝑗, (4.90)
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where the sign of the stoichiometric coefficients 𝜈𝑗 depends on whether the quantity is a
product (𝜈𝑗 > 0) or a reactant (𝜈𝑗 < 0).

The stoichiometric coefficients are convenient for us to rewrite the differential of the
Gibbs free energy. Notice that the change in the number of moles of some component is
typically proportional to its stoichiometric coefficient, and hence we can define the extent
of reaction 𝜉 according to6

d𝜉 = d𝑁1
𝜈1

= d𝑁2
𝜈2

= ⋯ = d𝑁𝑟
𝜈𝑟

, (4.91)

which in turn implies
d𝑁𝑖 = 𝜈𝑖 d𝜉 . (4.92)

Therefore, Eq. (4.87) on the previous page leads to

d𝐺 =
𝑟

∑
𝑖=1

𝜇𝑖𝜈𝑖 d𝜉 . (4.93)

We can then define the affinity by

𝐴 = −
𝑟

∑
𝑖=1

𝜇𝑖𝜈𝑖, (4.94)

which is a convenient choice because now we get to write

d𝐺 = −𝐴 d𝜉 . (4.95)

At equilibrium, we have d𝐺 = 0, and hence the affinity must vanish.
Notice that if the initial values for the quantities of each component are given by 𝑁0

𝑖
and we let them evolve, then they get to

𝑁𝑖 = 𝑁0
𝑖 + 𝜈𝑖𝜉∗, (4.96)

where 𝜉∗ = ∫ d𝜉.
As an example, let us suppose that we are dealing with a mixture of ideal gases. Then

their chemical potentials are given by (M. J. de Oliveira 2013, Eqs. (9.21) and (9.22))

𝜇𝑖 = 𝑅𝑇[𝑓𝑖(𝑇 ) + log 𝑝 + log 𝑥𝑖], (4.97)

where 𝑓𝑖(𝑇 ) is a function of the temperature alone and 𝑥𝑖 = 𝑁𝑖
𝑁 (𝑁 = ∑𝑖 𝑁𝑖) is the mole

fraction of the 𝑖-th component. Hence, at equilibrium we’ll have

𝐴 = 0, (4.98a)
𝑟

∑
𝑖=1

𝜇𝑖𝜈𝑖 = 0, (4.98b)

𝑟
∑
𝑖=1

𝜈𝑖 log 𝑥𝑖 = −
𝑟

∑
𝑖=1

𝜈𝑖𝑓𝑖(𝑇 ) −
𝑟

∑
𝑖=1

𝜈𝑖 log 𝑝. (4.98c)

6M. J. de Oliveira (2013, Sec. 19.1) gives a more general treatment, where Eq. (4.92) on page 141
doesn’t need to hold for all values of 𝑖.
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If we exponentiate this expression, we get to
𝑟

∏
𝑖=1

𝑥𝜈𝑖
𝑖 = �̃�(𝑇 )𝑝− ∑𝑟

𝑖=1 𝜈𝑖 , (4.99)

where 𝐾(𝑇 ) = ∏𝑟
𝑖=1 𝑓𝑖(𝑇 )−𝜈𝑖 is the equilibrium constant. Eq. (4.99) on the following

page is know as the law of mass action.
We can write the affinity using the law of mass action. Define 𝐾(𝑇 , 𝑝) = �̃�(𝑇 )𝑝− ∑𝑟

𝑖=1 𝜈𝑖 .
Then notice that

𝐴𝑒𝑞 = 𝑅𝑇 log 𝐾(𝑇 , 𝑝)
∏𝑟

𝑖=1 𝑥𝜈𝑖
𝑖

= 0. (4.100)

This formalism can also be extended to a collection of reactions and components. For
example, suppose we have 𝑟 reactions and 𝑠 components. Then we may write

d𝑁𝑖 =
𝑠

∑
𝑗=1

𝜈𝑖𝑗 d𝜉𝑗 , (4.101)

with the collection of reactions having the form

0 −−⇀↽−−
𝑟

∑
𝑖=1

𝜈𝑖𝑗B𝑖, (4.102)

where 𝐵𝑖 are the interacting species7. Notice that now each reaction has its own extent of
reaction.

This time, equilibrium requires
𝑟

∑
𝑖=1

𝜇𝑖𝜈𝑖𝑗 = 0 (4.103)

for each reaction 𝑗. If this is respected, the system reaches an equilibrium steady state.

Nonequilibrium Thermochemistry of a Single Reaction

Suppose Eq. (4.103) fails to hold for at least one reaction. Then this reaction either has
the reactants being annihilated and the products being created, or the other way around.
The reaction is not in equilibrium.

For a nonequilibrium steady state, the entropy production will equal the entropy flux.
In general, we have the relation

d𝑆
d𝑡

= Π − 𝜙. (4.104)

For a steady state, we get the equality Π = 𝜙. Let us also define an energy flux 𝜙𝑈 by

d𝑈
d𝑡

= −𝜙𝑈. (4.105)

For simplicity, let us focus on the case of a single reaction (𝑠 = 1). Then the first and
second laws imply together that Isn’t it just the

first?7We now reserved the letter 𝐴 for the affinity.
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d𝑆
d𝑡

= 1
𝑇

d𝑈
d𝑡

−
𝑟

∑
𝑖=1

𝜇𝑖
𝑇

d𝑁𝑖
d𝑡

, (4.106a)

= 1
𝑇

d𝑈
d𝑡

−
𝑟

∑
𝑖=1

𝜇𝑖𝜈𝑖
𝑇

d𝜉
d𝑡

, (4.106b)

= 1
𝑇

d𝑈
d𝑡

+ 𝐴
𝑇

d𝜉
d𝑡

, (4.106c)

= − 1
𝑇

𝜙𝑈 + 𝐴
𝑇

d𝜉
d𝑡

. (4.106d)

Comparing Eqs. (4.104) and (4.106) we see that

𝜙 = 𝜙𝑈
𝑇

, (4.107)

as one would expect from the intuitive notion of entropy in terms of heat fluxes, and that

Π = 𝐴
𝑇

d𝜉
d𝑡

, (4.108)

establishing a connection between the affinity and the entropy production. The affinity
plays the role of a thermodynamics force, while d𝜉

d𝑡 corresponds to a flux (in the terminology
we introduced on Section 1).

In the nonequilibrium steady state, we have

d𝜉
d𝑡

= 𝑤, (4.109)

where 𝑤 is a constant. Hence, the entropy production is given by

ΠNESS = 𝐴𝑤
𝑇

> 0, (4.110)

where the inequality is just an expression of the second law of thermodynamics. We’ll
later see that for small 𝑤 we get 𝑤 = 𝐿𝐴

𝑇 , and hence ΠNESS = 𝐿𝐴2

𝑇 2 , where 𝐿 is known as Cross reference
the Onsager coefficient. Notice that 𝐴 > 0 implies 𝑤 > 0, while 𝐴 < 0 implies 𝑤 < 0.

Let us give an example. Consider the reaction

H2 + Cl2 −−⇀↽−− 2 H Cl. (4.111)

The extent of reaction is such that

d𝜉 =
d𝑁H2

−1
=

d𝑁Cl2
−1

= d𝑁H Cl
2

. (4.112)

In the nonequilibrium steady state, we can write

𝑤 = d𝜉
d𝑡

= 𝑤+ − 𝑤− = 𝑘+𝑥H2
𝑥Cl2 − 𝑘−𝑥2

H Cl. (4.113)
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If 𝑤 > 0, the forward reaction dominates. If 𝑤 < 0, the backward reaction. If 𝑤 = 0, the
system is in equilibrium. At equilibrium, the so-called constants of reaction8 𝑘+ and 𝑘−
respect

𝑘+
𝑘−

=
(𝑥eq

H Cl)2

𝑥eq
H2

𝑥eq
Cl2

. (4.114)

The affinity can be written as

𝐴 = −𝜇H2
− 𝜇Cl2 + 2𝜇H Cl, (4.115)

or even

𝐴 = 𝑅𝑇 log 𝐾(𝑇 , 𝑝)
∏𝑟

𝑖=1 𝑥𝜈𝑖
𝑖

, (4.116a)

= 𝑅𝑇 log
∏𝑟

𝑖=1(𝑥eq
𝑖 )𝜈𝑖

∏𝑟
𝑖=1 𝑥𝜈𝑖

𝑖
, (4.116b)

= 𝑅𝑇 log
(𝑥eq

H Cl)2(𝑥eq
H2

)−1(𝑥eq
Cl2

)−1

𝑥2
H Cl𝑥−1

H2
𝑥−1

Cl2
. (4.116c)

We can now write 𝑤 in a way that relates it to the affinity. Notice that

𝑤 = 𝑘+𝑥H2
𝑥Cl2 − 𝑘−𝑥2

H Cl, (4.117a)

= 𝑘+𝑥H2
𝑥Cl2(1 − 𝑘−

𝑘+

𝑥2
H Cl

𝑥H2
𝑥Cl2

), (4.117b)

= 𝑘+𝑥H2
𝑥Cl2(1 −

𝑥eq
H2

𝑥eq
Cl2

(𝑥eq
H Cl)2

𝑥2
H Cl

𝑥H2
𝑥Cl2

), (4.117c)

= 𝑘+𝑥H2
𝑥Cl2(1 − 𝑒− 𝐴

𝑅𝑇 ). (4.117d)

Therefore, we can write the entropy production at the nonequilibrium steady state as

ΠNESS =
𝑘+𝑥H2

𝑥Cl2𝐴
𝑇

(1 − 𝑒− 𝐴
𝑅𝑇 ) > 0. (4.118)

If the system is close to the equilibrium regime (and therefore 𝐴 can be taken to be
small), we can approximate 𝑤 ≈ 𝑘+𝑥H2

𝑥Cl2
𝐴

𝑅𝑇 . Hence,

ΠNESS =
𝑘+𝑥H2

𝑥Cl2
𝑅

𝐴2

𝑇 2 = 𝐿𝐴2

𝑇 2 , (4.119)

where 𝐿 = 𝑘+𝑥H2𝑥Cl2
𝑅 is the Onsager coefficient.

Notice that 𝐴 = 0 leads to equilibrium.
8Also known as specific transition rates (Tomé and M. J. de Oliveira 2015b, p. 231).
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Nonequilibrium Thermochemistry of Coupled Reactions

Next, let us consider what happens when there are three coupled reactions going on. This
will introduce a new level of complexity and we’ll need to update some concepts.

For simplicity, we’ll consider the reactions

A
𝑘1

−−⇀↽−−
𝑘−1

B
𝑘2

−−⇀↽−−
𝑘−2

C
𝑘3

−−⇀↽−−
𝑘−3

A, (4.120)

with stoichiometric coefficients reading ±1.
We now define the affinity for each of the three reactions. They will be given by

𝐴1 = −𝜇A + 𝜇B, (4.121)
𝐴2 = −𝜇B + 𝜇C, (4.122)
𝐴3 = −𝜇C + 𝜇A. (4.123)

Notice that 𝐴1 + 𝐴2 + 𝐴3 = 0. This expresses that only two reactions are independent,
for the process is cyclic.

Alternatively, we can write

𝐴1 = 𝑅𝑇 log
𝑥eq

B 𝑥A
𝑥B𝑥eq

A
, (4.124)

𝐴2 = 𝑅𝑇 log
𝑥eq

C 𝑥B
𝑥C𝑥eq

B
, (4.125)

𝐴3 = 𝑅𝑇 log
𝑥eq

A 𝑥C
𝑥A𝑥eq

C
. (4.126)

In the nonequilibrium steady state we’ll have the entropy production

ΠNESS = 𝐴1𝑤1
𝑇

+ 𝐴2𝑤2
𝑇

+ 𝐴3𝑤3
𝑇

, (4.127)

where

𝑤1 = 𝑘1𝑥A − 𝑘−1𝑥B, (4.128)
𝑤2 = 𝑘2𝑥B − 𝑘−2𝑥C, (4.129)
𝑤3 = 𝑘3𝑥C − 𝑘−3𝑥A. (4.130)

Since 𝐴3 = −(𝐴1 + 𝐴2), we can also write

ΠNESS = 𝐴1(𝑤1 − 𝑤3)
𝑇

+ 𝐴2(𝑤2 − 𝑤3)
𝑇

. (4.131)

Let us consider what happens close to equilibrium. In this situation, we can expect
the affinities to be small. We assume the concentrations to be of the form

𝑥𝑖 = 𝑥eq
𝑖 + Δ𝑥𝑖, (4.132)
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where |Δ𝑥𝑖| ≪ 𝑥eq
𝑖 and 𝑖 runs over the different species. However, due to the same

argument we used on Eqs. (4.113) and (4.114) on the next page, we know that

𝑘1
𝑘−1

=
𝑥eq

B
𝑥eq

A
, 𝑘2

𝑘−2
=

𝑥eq
C

𝑥eq
B

, and 𝑘3
𝑘−3

=
𝑥eq

A
𝑥eq

C
. (4.133)

Using these expressions, we can eliminate 𝑘−𝑖, 𝑖 = 1, 2, 3, from 𝑤1 − 𝑤3 and 𝑤2 − 𝑤3.
Indeed,

𝑤1 − 𝑤3 = 𝑘1𝑥A − 𝑘−1𝑥B − 𝑘3𝑥C + 𝑘−3𝑥A, (4.134a)

= 𝑘1𝑥A − 𝑘1
𝑥eq

A
𝑥eq

B
𝑥B − 𝑘3𝑥C + 𝑘3

𝑥eq
C

𝑥eq
A

𝑥A, (4.134b)

= 𝑘1(𝑥eq
A + Δ𝑥A) − 𝑘1

𝑥eq
A

𝑥eq
B

(𝑥eq
B + Δ𝑥B) − 𝑘3(𝑥eq

C + Δ𝑥C) + 𝑘3
𝑥eq

C
𝑥eq

A
(𝑥eq

A + Δ𝑥A),

(4.134c)

= 𝑘1(Δ𝑥A −
𝑥eq

A
𝑥eq

B
Δ𝑥B) − 𝑘3(Δ𝑥C −

𝑥eq
C

𝑥eq
A

Δ𝑥A), (4.134d)

= 𝑘1𝑥eq
A (Δ𝑥A

𝑥eq
A

− Δ𝑥B
𝑥eq

B
) + 𝑘3𝑥eq

C (Δ𝑥A
𝑥eq

A
− Δ𝑥C

𝑥eq
C

). (4.134e)

Similarly,

𝑤2 − 𝑤3 = 𝑘2𝑥B − 𝑘−2𝑥C − 𝑘3𝑥C + 𝑘−3𝑥A, (4.135a)

= 𝑘2𝑥B − 𝑘2
𝑥eq

B
𝑥eq

C
𝑥B − 𝑘3𝑥C + 𝑘3

𝑥eq
C

𝑥eq
A

𝑥A, (4.135b)

= 𝑘2(𝑥eq
B + Δ𝑥B) − 𝑘2

𝑥eq
B

𝑥eq
C

(𝑥eq
C + Δ𝑥C) − 𝑘3(𝑥eq

C + Δ𝑥C) + 𝑘3
𝑥eq

C
𝑥eq

A
(𝑥eq

A + Δ𝑥A),

(4.135c)

= 𝑘2(Δ𝑥B −
𝑥eq

B
𝑥eq

C
Δ𝑥C) − 𝑘3(Δ𝑥C −

𝑥eq
C

𝑥eq
A

Δ𝑥A), (4.135d)

= 𝑘2𝑥eq
B (Δ𝑥B

𝑥eq
B

− Δ𝑥C
𝑥eq

C
) + 𝑘3𝑥eq

C (Δ𝑥A
𝑥eq

A
− Δ𝑥C

𝑥eq
C

). (4.135e)

In the linear regime, we can actually relate the expressions in parentheses to the
affinities. Notice, for example, that

𝐴1 = 𝑅𝑇 log
𝑥eq

B 𝑥A
𝑥B𝑥eq

A
, (4.136a)

= 𝑅𝑇 log
𝑥eq

B (𝑥eq
A + Δ𝑥A)

(𝑥eq
B + Δ𝑥B)𝑥eq

A
, (4.136b)

= 𝑅𝑇 log
1 + Δ𝑥A

𝑥eq
A

1 + Δ𝑥B
𝑥eq

B

, (4.136c)
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= 𝑅𝑇 log(1 + Δ𝑥A
𝑥eq

A
) − 𝑅𝑇 log(1 + Δ𝑥B

𝑥eq
B

), (4.136d)

= 𝑅𝑇(Δ𝑥A
𝑥eq

A
− Δ𝑥B

𝑥eq
B

) + ⋯ , (4.136e)

where the dots stand for higher order terms. Similar calculations lead to

𝐴2 = 𝑅𝑇(Δ𝑥B
𝑥eq

B
− Δ𝑥C

𝑥eq
C

) + ⋯ , (4.137)

and

𝐴3 = 𝑅𝑇(Δ𝑥C
𝑥eq

C
− Δ𝑥A

𝑥eq
A

) + ⋯ . (4.138)

Therefore, in the linear regime we can write

𝑤1 − 𝑤3 =
𝑘1𝑥eq

A 𝐴1
𝑅𝑇

−
𝑘3𝑥eq

C 𝐴3
𝑅𝑇

, (4.139)

and

𝑤2 − 𝑤3 =
𝑘2𝑥eq

B 𝐴2
𝑅𝑇

−
𝑘3𝑥eq

C 𝐴3
𝑅𝑇

. (4.140)

Since 𝐴3 = −(𝐴1 + 𝐴2),

𝑤1 − 𝑤3 =
𝑘1𝑥eq

A + 𝑘3𝑥eq
C

𝑅𝑇
𝐴1 +

𝑘3𝑥eq
C

𝑅𝑇
𝐴2, (4.141)

and

𝑤2 − 𝑤3 =
𝑘3𝑥eq

C
𝑅𝑇

𝐴1 +
𝑘2𝑥eq

B + 𝑘3𝑥eq
C

𝑅𝑇
𝐴2. (4.142)

We can write these expressions in the form

𝑤1 − 𝑤3 = 𝐿11𝐴1
𝑇

+ 𝐿12𝐴2
𝑇

, (4.143)

𝑤2 − 𝑤3 = 𝐿21𝐴1
𝑇

+ 𝐿22𝐴2
𝑇

, (4.144)

where we defined

𝐿11 =
𝑘1𝑥eq

A + 𝑘3𝑥eq
C

𝑅
, (4.145a)

𝐿12 =
𝑘3𝑥eq

C
𝑅

, (4.145b)

𝐿21 =
𝑘3𝑥eq

C
𝑅

, (4.145c)

𝐿22 =
𝑘2𝑥eq

B + 𝑘3𝑥eq
C

𝑅
. (4.145d)
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Using these results and Eq. (4.131), we conclude that

ΠNESS = 𝐿11𝐴2
1

𝑇 2 + 𝐿12𝐴1𝐴2
𝑇 2 + 𝐿21𝐴1𝐴2

𝑇 2 + 𝐿22𝐴2
2

𝑇 2 . (4.146)

A few comments are in order.

i. As a consequence of the reactions being coupled, the fluxes and forces (affinities)
are related in a bilinear manner. Namely, 𝑤𝑖 − 𝑤3 doesn’t depend only on 𝐴𝑖, but
on both affinities.

ii. In the absence of time-dependent drivings, 𝐿11, 𝐿22 ≥ 0 and 𝐿12 = 𝐿21
9.

iii. Since we always have ΠNESS ≥ 0, Eq. (4.146) on page 148 implies 𝐿11𝐿22 − 𝐿2
12 ≥ 0.

Unless equality holds, we can’t get equilibrium without detailed balance, for

𝐴1 = −𝐿12𝐴2 ± 𝐴2√𝐿2
12 − 𝐿11𝐿22

𝐿11
, (4.147)

which is a complex quantity.

iv. The coupling among the reactions can be used to determine the efficiency in which
the free energy is “exchanged” between them.

In many biological systems it is interesting to study the efficiency in which free energy is
transferred, because it can later be converted into work. However, the traditional formalism
of equilibrium thermodynamics is insufficient for these purposes. A biological system is
often at constant temperature, and hence the Carnot efficiency vanishes. Nevertheless,
this difficulty can be overcome by working with nonequilibrium systems.

Efficiency

Let us consider the expression for the entropy production10

ΠNESS = 𝑤1𝐴1
𝑇

+ 𝑤2𝐴2
𝑇

. (4.148)

A definition for efficiency that has been considered in a number of works is Any references?

𝜂 = −𝑤1𝐴1
𝑤2𝐴2

. (4.149)

This means that to convert a type of energy from reaction 1 to reaction 2 we need
the generalized affinity 𝐴1 to act against its flux 𝑤1 (𝑤1𝐴1 ≤ 0), in a manner that
counterbalances the driving force of 𝑤2𝐴2 ≥ 0. If both 𝑤1𝐴1 ≥ 0 and 𝑤2𝐴2 ≥ 0, then the
efficiency is negative, meaning there is transfer of energy from reaction 2 to reaction 1.

9Prof. Fiore’s notes mention this is in accordance with his first lecture, but I didn’t really understand
the relevance of this comment.

10I think Prof. Fiore is now considering a system of only two coupled reactions.
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Chemical reactions will typically have reaction 2 supplying free energy. Some of this
energy is used by reaction 1 to run against its “natural direction”, while the remainder is
liberated as heat.

We can also write the efficiency in terms of the Onsager coefficients. We get

𝜂 = −𝐿11𝐴2
1 + 𝐿12𝐴1𝐴2

𝐿21𝐴1𝐴2 + 𝐿22𝐴2
2

. (4.150)

Let us define
𝑧2 = 𝐿22

𝐿11
and 𝑞 = 𝐿12

√𝐿11𝐿22
. (4.151)

Then we can write the efficiency as

𝜂 = −𝐿11𝐴2
1 + 𝐿12𝐴1𝐴2

𝐿21𝐴1𝐴2 + 𝐿22𝐴2
2

, (4.152a)

= −
𝐴2

1 + 𝐿12
𝐿11

𝐴1𝐴2
𝐿21
𝐿11

𝐴1𝐴2 + 𝐿22
𝐿11

𝐴2
2

, (4.152b)

= − 𝐴2
1 + 𝑞𝑧𝐴1𝐴2

𝑞𝑧𝐴1𝐴2 + 𝑧2𝐴2
2

. (4.152c)

Similarly, the entropy production becomes

ΠNESS = 𝐿11𝐴2
1

𝑇 2 + 𝐿12𝐴1𝐴2
𝑇 2 + 𝐿21𝐴1𝐴2

𝑇 2 + 𝐿22𝐴2
2

𝑇 2 , (4.153a)

𝑇 2ΠNESS
𝐿11

= 𝐴2
1 + 2𝐿12

𝐿11
𝐴1𝐴2 + 𝐿22

𝐿11
𝐴2

2, (4.153b)

= 𝐴2
1 + 2𝑞𝑧𝐴1𝐴2 + 𝑧2𝐴2

2. (4.153c)

The efficiency and the entropy production are not independent. For example, notice
that the minimum value for the entropy production as a function of 𝐴1 is at

𝐴∗
1 = −𝑞𝑧𝐴2. (4.154)

At this value, for 𝑞 ≠ 1, 𝜂 = 0. We also get 𝜂 = 0 at 𝐴1 = 0. For 𝐴∗
1 = −𝑞𝑧𝐴2 ≤ 𝐴1 ≤ 0

(assuming 𝑧 > 0, and reversing the signs otherwise) we get 0 ≤ 𝜂 ≤ 1. For 𝐴1 > 0 and
−𝑧

𝑞 < 𝐴1 < 𝐴∗
1 one has 𝜂 < 0. Hence, the energy from reaction 1 will be converted to

reaction 2 only for 𝐴∗
1 = −𝑞𝑧𝐴2 ≤ 𝐴1 ≤ 0.

The value 𝐴∗∗
1 for which 𝜂 is maximum is given by

𝐴∗∗
1 = −𝐴2𝑧

𝑞
(1 − √1 − 𝑞2), (4.155)

at which point we have
𝜂max = 1

𝑞2 (2 − 𝑞2 − 2√1 − 𝑞2). (4.156)

Fig. 4.10 on page 150 shows how the maximum value of 𝜂 changes with 𝑞. Fig. 4.11
on page 151 shows the behavior of the entropy production and of the efficiency for a few
values of 𝑞 and 𝑧.
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Figure 4.10: Maximum value of the efficiency as a function of 𝑞.
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