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1 Minkowski Spacetime
We begin by writing the Minkowski metric in spherical coordinates,

ds2 = −dt2 + dr2 + r2 dΩ2 , (1.1)

where dΩ2 is the usual metric on the unit sphere.
Our goal will be to represent the entire, infinite spacetime in a finite diagram. In

order to do so, we’ll need to “pull-in infinity” by means of what is called a conformal
transformation, which shall keep the causal structure of spacetime unchanged while
allowing us to compactify it. Roughly speaking, we’ll find a new, unphysical metric g̃ab
which relates to the spacetime metric gab through an expression of the form g̃ab = Ω2gab,
where Ω is a smooth, strictly-positive function of spacetime. Notice that a vector is null
with respect to one of the metrics if, and only if, it is null with respect to the other. By
exploiting this, we’ll be able to rewrite the spacetime as a piece of a different, unphysical
spacetime. Roughly speaking, this piece is what the call the Penrose diagram.

In order to do this procedure, we’ll first find a set of null coordinates, which will make
our job of compactifying easier since we’ll be able to compactify these coordinates to a
new set of null coordinates. By “null coordinates”, we mean coordinates whose associated
vector fields are null, id est, u is said to be null when gab

(
∂
∂u

)a( ∂
∂u

)b
= 0.

To obtain a pair of coordinates, we’ll investigate the radial null geodesics in Minkowski
spacetime, which corresponds to solving

0 = −dt2 + dr2 , (1.2)

where we’ve set ds2 = 0 (null) and dΩ2 = 0 (radial) in the metric. We see then that null,
radial geodesics in Minkowski spacetime respect(

dt
dr

)2

= 1, (1.3)

dt
dr

= ±1, (1.4)

t = ±r + constant, (1.5)
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Figure 1: Illustration, with one dimension suppressed, of the physical meaning of the null
coordinates u and v. Surfaces of constant u are outgoing spherical “waves”, while
surfaces of constant v are their incoming analogues. The figure is based on Hawking
and Ellis 1973, Fig. 12.i.

where the sign depends on whether the geodesic is incoming or outgoing. We can then
label each incoming or outgoing geodesic in terms of the constant that accompanies the
solution, id est, we define new coordinates according to

v = t+ r and u = t− r, (1.6)

where v plays the role of “advanced time” and u plays the role of “retarded time”. These
are the null coordinates we were looking for. See Fig. 1 for an illustration of the physical
meaning of these coordinates.

Noticing that
t =

v + u

2
and r =

v − u

2
, (1.7)

we find that

dt2 = 1

4
(dv2 + 2 dv du+ du2) and dr2 = 1

4
(dv2 − 2dv du+ du2), (1.8)

which at last yield
− dt2 + dr2 = −1

4
dudv . (1.9)

Hence, the Minkowski metric becomes

ds2 = −1

4
dv du+

1

4
(v − u)2 dΩ2 . (1.10)
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Notice that, since t ∈ R and r ≥ 0, our new coordinates have the ranges

−∞ < u ≤ v < +∞. (1.11)

Hence, while we are now in a more convenient coordinate system for dealing with radial
null geodesics, it is still not compact. We’ll compactify it by defining new coordinates U
and V through

u = tanU and v = tanV. (1.12)

Notice that we can still label radial geodesics with U and V , for if u is constant
throughout a geodesic, so is U and vice-versa, with similar statements for v and V .
However, we now have

− π

2
< U ≤ V <

π

2
, (1.13)

where the ordering U < V comes from the tangent function being monotonically increasing
in
(
−π

2 ,
π
2

)
.

Noticing that
du = sec2 U dU and dv = sec2 V dV , (1.14)

we see that the metric becomes

ds2 = −sec2 U sec2 V
4

dU dV +
(tanV − tanU)2

4
dΩ2 , (1.15a)

= −sec2 U sec2 V
4

dU dV +
sec2 U sec2 V sin2(V − U)

4
dΩ2 , (1.15b)

=
sec2 U sec2 V

4

[
−dU dV + sin2(V − U)dΩ2

]
. (1.15c)

We now make a conformal transformation to keep the unphysical metric

ds̃2 = −dU dV + sin2(V − U)dΩ2 . (1.16)

It is convenient to perform another change of coordinates through

V = T +R and U = T −R, (1.17)

so that we get
ds̃2 = −dT 2 + dR2 + sin2R dΩ2 (1.18)

at last. This is a subsection of the Einstein static universe restricted to

− π

2
< T −R ≤ T +R <

π

2
, (1.19)

which is compact. Notice we have T ∈
(
−π

2 ,
π
2

)
and R ≥ 0.

We can now represent this spacetime in a finite drawing, which is the Penrose diagram
of Minkowski spacetime, shown in Fig. 2 on the next page. Notice it includes a few extra
pieces that are not part of Minkowski spacetime: the past and future null infinities, I−

and I+, which are three-manifolds at T −R = −π
2 and T +R = +π

2 ; the spatial infinity,
i0, at T = 0, R = π

2 ; and the past and future timelike infinities, at T = −π
2 , R = 0, and

at T = +π
2 , R = 0.
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Figure 2: Penrose diagram of Minkowski spacetime.

2 Schwarzschild Spacetime
Next we perform an analogous analysis of Schwarzschild spacetime, which will be a bit
more involved due to the presence of a coordinate singularity when we write the metric in
Schwarzschild coordinates. Apart from that, the analysis is essentially identical.

We begin with the metric

ds2 = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2 dΩ2 . (2.1)

As before, our first step is to introduce null coordinates. The equation for radial null
geodesics in Schwarzschild spacetime becomes

−
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 , (2.2)

and hence
dt
dr

= ± 1

1− 2M
r

. (2.3)

We can integrate this equation to

t = ±
∫

dr
1− 2M

r

, (2.4a)

= ±
∫

r dr
r − 2M

, (2.4b)
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Figure 3: Behaviour of the tortoise coordinate r∗ = r + 2M log
∣∣ r
2M − 1

∣∣ as a function of r. The
divergence at r = 2M will allow us to balance the divergence coming from the bad
coordinate choice in the metric.

= ±
∫

(ρ+ 2M)dρ
ρ

, (2.4c)

= ±ρ± 2M log |ρ|+ constant, (2.4d)

= ±r ± 2M log
∣∣∣ r

2M
− 1
∣∣∣+ constant, (2.4e)

where we defined ρ = r− 2M and absorbed a few terms in the integration constant in the
last step.

Due to this expression, we define the Regge–Wheeler “tortoise coordinate”, r∗, by

r∗ = r + 2M log
∣∣∣ r

2M
− 1
∣∣∣, (2.5)

which allows us to write, for the radial null geodesics,

t = ±r∗ + constant. (2.6)

The tortoise coordinate as a function of the radial distance r is plotted in Fig. 3.
In analogy with our procedure for the Minkowski spacetime, we now define new

coordinates
ṽ = t+ r∗ and ũ = t− r∗, (2.7)

where the tilde is used just because we’ll make more coordinate changes this time and I’d
like to keep the notation (u, v) for later. This time we have the one-forms

dũ = dt− dr
1− 2M

r

and dṽ = dt+ dr
1− 2M

r

, (2.8)
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which imply

−
(
1− 2M

r

)
dũ ṽ = −

(
1− 2M

r

)(
dt− dr

1− 2M
r

)(
dt+ dr

1− 2M
r

)
, (2.9a)

= −
(
1− 2M

r

)(
dt2 − dr2(

1− 2M
r

)2
)
, (2.9b)

= −
(
1− 2M

r

)
dt2 −

(
1− 2M

r

)−1

dr2 . (2.9c)

Hence, the Schwarzschild metric can be rewritten as

ds2 = −
(
1− 2M

r

)
dũ ṽ + r2 dΩ2 , (2.10)

where r is now seen as a function defined implicitly by

r + 2M log
∣∣∣ r

2M
− 1
∣∣∣ = ṽ − ũ

2
. (2.11)

This last equation will allow us to get rid of the
(
1− 2M

r

)
in the metric, which is still

keeping us from using the metric at the event horizon. We notice that

log
∣∣∣ r

2M
− 1
∣∣∣ = ṽ − ũ

4M
− r

2M
, (2.12a)∣∣∣ r

2M
− 1
∣∣∣ = e

ṽ−ũ
4M e−

r
2M , (2.12b)(

1− 2M

r

)
= ±2Me−

r
2M

r
e

ṽ−ũ
4M , (2.12c)

where, in the last line, the upper sign refers to the case r > 2M and the lower sign refers
to the case r < 2M . With this expression the Schwarzschild metric becomes

ds2 = ∓2Me−
r

2M

r
e

ṽ−ũ
4M dũdṽ + r2 dΩ2 . (2.13)

We’ll now get rid of the exponential e
ṽ−ũ
4M , which vanishes at the horizon, by performing

an auxiliary redefinition of coordinates before compactifying spacetime. Namely, we define

u = ∓e
−ũ
4M and v = e

ṽ
4M , (2.14)

where, as before, the upper sign refers to r > 2M . The one-forms become

du = ± 1

4M
e

−ũ
4M dũ and dv =

1

4M
e

ṽ
4M dṽ , (2.15)

id est,
− 16M2 dudv = ∓e

ṽ−ũ
4M dũdṽ , (2.16)
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Figure 4: Plot of the function uv = e
r

2M

(
1− r

2M

)
, showing it attains a maximum value uv = 1

at r = 0. Since r = 0 is an essential singularity, the coordinates (u, v) are restricted to
uv < 1.

meaning the Schwarzschild metric is now given by

ds2 = −32M3e−
r

2M

r
dudv + r2 dΩ2 , (2.17)

which is nonsingular at the event horizon.
To properly compactify the spacetime, we should keep track of the ranges of each

coordinate, so let us take a look at the ranges of u and v. Firstly we notice that

uv = ∓e
ṽ−ũ
4M , (2.18a)

= ∓e
r∗
2M , (2.18b)

= ∓e
r

2M

∣∣∣ r

2M
− 1
∣∣∣, (2.18c)

= e
r

2M

(
1− r

2M

)
, (2.18d)

where the last line uses the fact that the upper sign refers to r > 2M (when
∣∣ r
2M − 1

∣∣ =(
r

2M − 1
)
), while the lower sign refers to r < 2M (when

∣∣ r
2M − 1

∣∣ = (1− r
2M

)
).

The fact that e
r

2M

(
1− r

2M

)
≤ 1 (see Fig. 4) imposes the condition uv ≤ 1. However,

the only point in which uv = 1 is r = 0, which is an intrinsic singularity of the Schwarzschild
spacetime. This can be seen, for example, by computing the Kretschmann scalar, K =
RabcdRabcd, which behaves as M2r−6, and hence diverges at r = 0(Hawking and Ellis
1973, p. 151). Hence, we must restrict our attention to uv < 1.
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Figure 5: Kruskal diagram of the unique analytic and locally inextendible extension of
Schwarzschild spacetime. The red hyperbolae are hypersurfaces of constant r. The blue
straight lines are hypersurfaces of constant t. The crossing axes correspond to r = 2M .
The hyperbolae in zizag correspond to r = 0 and both them and the shaded regions they
bound are not in spacetime.

For completeness, let us also notice that

v

u
= ∓e

ṽ+ũ
4M , (2.19a)

= ∓e
t

2M , (2.19b)

which means
t

2M
= log

∣∣∣v
u

∣∣∣. (2.20)

One should notice that the (u, v) coordinates allow us to extend the spacetime, since
the same value of (t, r) allows for two different values of (u, v). For example, r = 2M can
be achieved via either v = 0 or u = 0. This reveals the fact that our original choice of
coordinates covered only a portion of the manifold.

At this stage, albeit we have not performed a conformal transformation yet, it is
instructive to draw a diagram of the current situation. Such a diagram, known as a
Kruskal diagram, is show in Fig. 5. It represents the full spacetime, including now the
pieces we left out in our original choice of coordinates.

To compactify our coordinates, we proceed as before by defining

u = tanU and v = tanV. (2.21)
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The metric can now be written as

ds2 = −32M3e−
r

2M

r
sec2 U sec2 V dU dV + r2 dΩ2 , (2.22)

and the conformal transformation will come by means of defining

ds̃2 = −dU dV +
r3 cos2 U cos2 V e

r
2M

32M3
dΩ2 , (2.23)

which is the unphysical metric of the diagram we’ll draw. We should not forget to keep
track of the ranges of the coordinates. This time, we have −π

2 < U, V < +π
2 with the

additional condition that uv = tanU tanV < 1.
Suppose, temporarily, that V > 0. Then

tanU tanV < 1, (2.24a)
tanU < cotV, (2.24b)

U < arctan(cotV ). (2.24c)

Since cotV = tan
(
π
2 − V

)
, it follows that

U < arctan
(

tan
(π
2
− V

))
. (2.25a)

We know arctan(tan(x)) = x for x ∈
(
−π

2 ,
π
2

)
, so if we ensure the argument is in this

range we can compute the expression. For 0 < V < π
2 , 0 < π

2 − V < π
2 , so we have the

condition
U <

π

2
− V for V > 0. (2.26)

Similarly one gets
U > −π

2
− V for V < 0. (2.27)

Taking these restrictions into account, we can draw the Penrose diagram for the
maximally extended Schwarzschild spacetime. We define, for convenience, the new
variables T and R by means of the expressions

V = T +R and U = T −R. (2.28)

The diagram is given on Fig. 6 on the next page. We see we have four regions, I
through IV. The union of I and III represents the original piece of spacetime we had in
hands, and the same holds for the union of II and IV. Hence, we have “an Universe” I, a
“parallel Universe”, a black hole III, and a “white hole” IV.
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Figure 6: Penrose diagram of the maximally extended Schwarzschild spacetime.

3 Spatially Flat, Radiation-Filled Universe
Next we’ll consider a spatially flat, radiation-filled Universe. Since it is spatially flat, the
metric is given in terms of cosmic time τ by

ds2 = −dτ2 + a(τ)2
[
dr2 + r2 dΩ2

]
, (3.1)

where a(τ) is the scale factor. It can be determined from the Friedmann equationsWald
1984, Eqs. (5.2.14) and (5.2.15), 

3
ȧ2

a2
= 8πρ− 3k

a2
,

3
ä

a
= −4π(ρ+ 3p),

(3.2)

where k represents the spatial curvature (k = 0 for spatially flat, which is our case of
interest), p is the pressure of a perfect fluid filling the Universe, ρ is the fluid’s energy
density, and the dot denotes differentiation with respect to cosmic time τ . For radiation,
one has the equation of state p = ρ

3 .
Therefore, for our particular case the Friedmann equations become

3
ȧ2

a2
= 8πρ,

3
ä

a
= −8πρ,

(3.3)

From this pair of equations we see that

ȧ2

a2
+

ä

a
= 0, (3.4a)
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ȧ2äa = 0, (3.4b)
d
dt

(aȧ) = 0, (3.4c)

aȧ = c, (3.4d)

where c is some constant. Notice that

c = a2
ȧ

a
, (3.5a)

= a2H(τ), (3.5b)

which, since is a constant, can be written in terms of the present-day scale factor a and
Hubble parameter H = ȧ

a . It is conventional to pick the present-day scale factor to be
a0 = 1. Denoting the present-day Hubble parameter by H0, we see we now have

aȧ = H0, (3.6)

which can be integrated to

a(τ) =
√
2H0(τ − τ0) + 1. (3.7)

For any H0 > 0, there is some τ at which a(τ) = 0. We’ll choose τ0 = 1
2H0

, so that
a(0) = 0. Hence, we get to

a(τ) =
√
2H0τ . (3.8)

Therefore, we get to the metric

ds2 = −dτ2 + 2H0τ
[
dr2 + r2 dΩ2

]
. (3.9)

As before, our first step is to find the radial null geodesics. We get

dτ2 = 2H0τ dr2 , (3.10)

which gives the ordinary differential equations

dr
dτ

= ± 1√
2H0τ

. (3.11)

Integrating it leads us to

r = ±
√

2τ

H0
+ constant. (3.12)

As usual, we define null coordinates through

u =

√
2τ

H0
− r and v =

√
2τ

H0
+ r, (3.13)

leading to
du =

dτ√
2H0τ

− dr and dv =
dτ√
2H0τ

+ dr , (3.14)

– 11 –



which in turn implies
− 2H0τ dudv = −dτ2 + 2H0τ dr2 . (3.15)

Noticing that

τ =
H0(v + u)2

8
and r =

v − u

2
, (3.16)

we obtain the new expression for the metric,

ds2 = −H2
0 (v + u)2

4
dudv + H2

0 (v + u)2(v − u)2

16
dΩ2 . (3.17)

Our original coordinates had the ranges τ > 0, r > 0. For consistency, the new ones
must have u+ v > 0 and v − u > 0.

Next we compactify the null coordinates. As usual, we define

v = tanV and u = tanU, (3.18)

with ranges in
(
−π

2 ,
π
2

)
. Since u > −v, id est, tanU > tan(−V ), we must have U > −V ,

where we employed the fact that the tangent is crescent and odd at
(
−π

2 ,
π
2

)
. Similarly,

we must have V > U .
Since

dv = sec2 V dV and du = sec2 U dU , (3.19)

the metric becomes

ds2 = −H2
0 (v + u)2

4
sec2 U sec2 V dU dV +

H2
0 (v + u)2(tanV − tanU)2

16
dΩ2 , (3.20a)

=
H2

0 (tanV + tanU)2

16
sec2 U sec2 V

[
−4dU dV + sin2(V − U)dΩ2

]
, (3.20b)

where we also employed the trigonometric identity

(tanV − tanU)2 = sec2 U sec2 V sin2(V − U). (3.21)

Hence, we compactify the spacetime by defining the unphysical metric

ds̃2 = −4dU dV + sin2(V − U)dΩ2 . (3.22)

At last, we define new coordinates T and R through

R = U − V and T = U + V, (3.23)

leading to
ds̃2 = −dT 2 + dR2 + sin2R dΩ2 . (3.24)

The ranges of these coordinates are such that

0 < R, T < π and R+ T < π, (3.25)
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Figure 7: Penrose diagram for a spatially flat Universe filled with radiation.

which come from both the conditions that U, V ∈
(
−π

2 ,+
π
2

)
, U + V > 0, and V − U > 0.

With this information, we can now draw the diagram, which is given in Fig. 7.
An interesting feature of this Penrose diagram is that we can notice that there are

regions in the early Universe which can’t come into causal contact. This poses an
interesting question then to how can the cosmic microwave background be so uniform,
which is often solved by the notion of inflation: the Universe undergoes an initial phase of
accelerated expansion, allowing far regions to come into causal contact, before entering a
decelerating phase.

4 Spatially Closed, Radiation-Filled Universe
Once we know the causal structure of the flat radiation-filled universe, it is interesting to
consider what happens for other choices of spatial curvature. If we pick a spatially closed,
radiation-filled universe, the metric will be given by

ds2 = −dτ2 + a(τ)2
[
dr2 + sin2 r dΩ2

]
, (4.1)

where the Friedmann equations for the scale factor are now given by
3
ȧ2

a2
= 8πρ− 3

a2
,

3
ä

a
= −8π,

(4.2)

This time we get the differential equation

ä

a
+

ȧ2

a2
+

1

a2
= 0, (4.3)

id est,

aä+ ȧ2 + 1 = 0. (4.4)
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TO integrate it, we do the same trick as for the flat universe. We have

d
dt

(aȧ) = −1, (4.5a)

aȧ = −τ + constant. (4.5b)

To fix the constant, we notice as before that aȧ = a2H, and hence

constant = τ0 +H0, (4.6)

where τ0 is present-time and H0 is the present-day value of the Hubble constant. As
before, we assume a(τ0) = 1. We see then that we get

aȧ = −τ + τ0 +H0, (4.7a)
ada = [H0 − (τ − τ0)]dτ , (4.7b)
a2

2
= H0τ + τ0τ − τ2

2
+ c, (4.7c)

for some constant c, which we’ll fix by requiring a(τ0) = 1. We have

a(τ) =
√
2H0τ + 2τ0τ − τ2 + 2c. (4.8)

Hence,

1 = a(τ0), (4.9a)

=
√
2H0τ0 + 2τ20 τ − τ20 + 2c, (4.9b)

1 = 2H0τ0 + τ20 + 2c, (4.9c)
1− 2H0τ0 − τ20 = 2c. (4.9d)

The scale factor is then given by

a(τ) =
√
2H0τ + 2τ0τ − τ2 + 1− 2H0τ0 − τ20 , (4.10a)

=
√
1 + 2H0(τ − τ0)− (τ − τ0)2. (4.10b)

The expression can be further simplified by fixing τ0. The scale factor has two roots,
as we can see by imposing a(τ) = 0. Indeed,√

1 + 2H0(τ − τ0)− (τ − τ0)2 = 0, (4.11a)
1 + 2H0(τ − τ0)− (τ − τ0)

2 = 0, (4.11b)

and the quadratic formula yields

τ − τ0 = H0 ±
√
1 +H2

0 , (4.12)
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both of which are perfectly plausible. We then choose τ0 such that a(0) = 0 and τ0 > 0,
id est,

τ0 =
√
1 +H2

0 −H0. (4.13)

Notice that we also get a maximum time τmax = 2
√
1 +H2

0 .
The scale factor can now be written as

a(τ) =
√

1 + 2H0(τ − τ0)− (τ − τ0)2, (4.14a)

=
√

1 + (τ − τ0)(2H0 − τ + τ0), (4.14b)

=

√
1 + (τ +H0 −

√
1 +H2

0 )(
√
1 +H2

0 +H0 − τ + τ0), (4.14c)

=

√
1 +H2

0 − (τ −
√
1 +H2

0 )
2. (4.14d)

The metric is then given explicitly by

ds2 = −dτ2 +
[
1 +H2

0 − (τ −
√

1 +H2
0 )

2

][
dr2 + sin2 r dΩ2

]
. (4.15)

Notice the coordinate ranges are τ ∈ (0, 2
√

1 +H2
0 ) and r ∈ (0, π).

Let us then compute the radial null geodesics. The differential equation is

dr
dτ

= ± 1√
1 +H2

0 − (τ −
√
1 +H2

0 )
2

= ± 1

a(τ)
, (4.16)

and its solution will be

r(τ) = ±
∫

dτ√
1 +H2

0 − (τ −
√
1 +H2

0 )
2

= ±
∫

dτ
a(τ)

. (4.17)

To perform the integral, let us change notation for a while. We write ∆ ≡
√
1 +H2

0 .
With a few substitutions we see that∫

dτ√
1 +H2

0 − (τ −
√
1 +H2

0 )
2

=

∫
dτ√

∆2 − (τ −∆)2
, (4.18a)

=

∫
dλ√

∆2 − λ2
, (4.18b)

=
1

∆

∫
dλ√
1− λ2

∆2

, (4.18c)

=

∫
dµ√
1− µ2

, (4.18d)

= arcsinµ+ constant, (4.18e)
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= arcsin
(
λ

∆

)
+ constant, (4.18f)

= arcsin
(
τ −∆

∆

)
+ constant, (4.18g)

= arcsin

(
τ −

√
1 +H2

0√
1 +H2

0

)
+ constant, (4.18h)

where we performed the substitutions λ = τ −∆ and µ = λ
∆ .

At this point, we can mimic our procedure for the previous cases and define

u = arcsin

(
τ −

√
1 +H2

0√
1 +H2

0

)
− r and v = arcsin

(
τ −

√
1 +H2

0√
1 +H2

0

)
+ r, (4.19)

which have
du =

dτ
a(τ)

− dr and dv =
dτ
a(τ)

+ dr , (4.20)

where we wrote a(τ) instead of the full expression a(τ) =
√
1 +H2

0 − (τ −
√
1 +H2

0 )
2

for simplicity. We then have

− a(τ)2 dudv = −dτ2 + a(τ)2 dr2 , (4.21)

and the metric becomes

ds2 = −a(τ)2 dudv + a(τ)2 sin2

(
v − u

2

)
dΩ2 , (4.22)

where τ is now understood as a function of u and v.
The range of τ is automatically enconded in the fact that

u+ v

2
= arcsin

(
τ −

√
1 +H2

0√
1 +H2

0

)
, (4.23)

since it ends up being the domain of definition of the expression. We see this equation
also imposes that

− π

2
<

u+ v

2
< +

π

2
, (4.24)

since this is the range of the arcsine. The range of r also imposes that

0 <
v − u

2
< π. (4.25)

We’ll define the unphysical metric through

ds̃2 = −dudv + sin2

(
v − u

2

)
dΩ2 . (4.26)
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Figure 8: Penrose diagram for a spatially closed Universe filled with radiation.

Defining
T =

u+ v

2
+

π

2
and R =

v − u

2
(4.27)

we get to
ds̃2 = −dT 2 + dR2 + sin2R dΩ2 . (4.28)

The π
2 term on T is there to change its range slightly. With these choices, notice we

get
0 < T < π and 0 < R < π, (4.29)

leading to the diagram Fig. 8. We have two coordinate singularities at the sides, which
are the usual singularities one has in the spherical coordinate system (remember this
universe is spatially a 3-sphere, so R = 0 and R = π are analogous to θ = 0 and θ = π in
the 2-sphere), while at the top and bottom we have real singularities associated to the
Big Bang and Big Crunch of the Universe.

This time we didn’t need to compactify our coordinates, for the closed universe is
already compact. Instead, we only changed coordinates in order to have the lightcones at
π
4 angles and introduced a conformal scale for mere convenience. Notice this conformal
scaling is the same one we would get if we used conformal time from the beginning, instead
of cosmic time (conferatur Wald 1984, p. 104–105).

We can read from Fig. 8 an interesting result on the causal structure of the spatially
flat, radiation-filled universe: at the moment of the Big Crunch, the particle horizons
cease to exist, id est, at the moment of the Big Crunch a light particle emitted at the
beginning of the Universe has completed a travel halfway across the Universe, and at
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this moment all points in space come into causal contact with each other. This result is
discussed in Wald 1984, Sec. 5.3b.

5 Spatially Closed, Dust-Filled Universe
Penrose diagrams capture the causal structure of spacetime, and hence we should be able
to see the differences in causal structure clearly. The spatially closed, radiation-filled
universe provided a nice example, since it shows clearly the presence and disappearance
of its particle horizons. As mentioned in Wald 1984, Sec. 5.3b, for a spatially closed,
dust-filled universe the particle horizons disappear at the middle of the universe’s lifetime,
instead of at the end. It is then particularly interesting for us to take a look at how the
Penrose diagram for this different universe looks like.

From the previous example, we’ve seen that the conformal transformation we end
up performing on a closed universe is pretty much just changing from cosmic time to
conformal time. Hence, this time we’ll write the metric as

ds2 = −a(t)2
[
−dt2 + dr2 + sin2 r dΩ2

]
, (5.1)

which spares us the effort of changing to null coordinates and back. We already know the
range of the r coordinate is (0, π), due to the spherical coordinate system. We just need
to figure out the range of the t coordinate. This can be done by solving the Friedmann
equations and looking at the roots of the scale factor.

Since we’ll be working with both cosmic and conformal time, we shall make clear that
we denote by ȧ the derivative of the scale factor with respect to cosmic time τ and by a′

the derivative with respect to conformal time t. We also recall that conformal time and
cosmic time are related by

dτ = a(t)dt , (5.2)

which is the coordinate transformation one needs to perform to get to Eq. (5.1) from
Eq. (4.1) on page 13.

The Friedmann equations are given for our case by
3
ȧ2

a2
= 8πρ− 3

a2
,

3
ä

a
= −4πρ,

(5.3)

which lead us to

ȧ2 + 2aä+ 1 = 0, (5.4a)
ȧ3 + 2aȧä+ ȧ = 0, (5.4b)

d
dτ
(
aȧ2 + a

)
= 0, (5.4c)

aȧ2 + a = constant. (5.4d)
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From the same arguments we used in the previous cases, we see that the constant is
H2

0 + 1. Hence, we get to the differential equation

aȧ2 + a = H2
0 + 1. (5.5)

This equation is given in terms of cosmic time, but we are interested in figuring out
what happens in conformal time. Hence, we should find the differential equation with
respect to conformal time. Since

ȧ =
da
dτ

, (5.6a)

=
da
dt

dt
dτ

, (5.6b)

=
a′

a
, (5.6c)

and hence the Friedmann equations yield

a
a′2

a2
+ a = H2

0 + 1. (5.7)

For simpicity, we’ll write ∆ = H2
0 + 1 from now on. The differential equation we want

to solve is

a′
2
+ a2 −∆a = 0, (5.8)

id est,

a′ = ±
√
∆a− a2. (5.9)

To solve the differential equation, we notice that

dt = da√
∆a− a2

, (5.10)

which can be integrated by completing squares in the denominator and using essentially
the same tricks we used on Eq. (4.18) on page 15. At the end of the day, one gets to

t = ± arcsin
(
2a−∆

∆

)
+ c±, (5.11)

where c± is a constant that could depend on the sign taken in consideration in the
differential equation.

Let us isolate a. We can do this by noticing that

t− c± = ± arcsin
(
2a−∆

∆

)
, (5.12a)

sin(t− c±) = ±2a−∆

∆
, (5.12b)

∆

2
± ∆

2
sin(t− c±) = a, (5.12c)
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Figure 9: Penrose diagram for a spatially closed Universe filled with dust.

and hence,
a(t) =

∆

2
(1± sin(t− c±)), (5.13)

from which we can already see that the Universe will indeed have a Big Bang and a Big
Crunch, for the sine will vanish more than once. We would like to keep the Big Bang at
t = 0, so we pick c± = ±π

2 . This ends up ensuring both signs yield the very same thing,
for

+ sin
(
t− π

2

)
= cos(t) = − sin

(
t+

π

2

)
. (5.14)

Hence, we have

a(t) =
1 +H2

0

2
(1− cos t). (5.15)

We have the Big Bang at t = 0 by construction, since we choose time to start at the Big
Bang. As for the Big Crunch, it happens at the next root of a(t), which is t = 2π. We
are now in position to draw the Penrose diagram for this universe. It is shown in Fig. 9,
which defines T = t and R = r to keep consistency with the notation used in the previous
diagrams.

Comparing Figs. 8 and 9 on page 17 and on this page we see that the dust-filled
universe has a taller diagram. This exhibits the difference between the causal structures
of the two models: the particle horizons disappear at the middle of the universe’s lifetime,
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instead of at the end. The fact that the diagram is taller reflects this, because the
lightcones are always kept at a π

4 angle. Once one gets to the Big Crunch, all of space
was already available to be seen by anyone.
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