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1 Tempered Distributions

The goal of this text is to understand tempered distributions under the light of the theory

of locally convex spaces. In order to do so, let us begin by defining what we mean by a

tempered distribution.

Definition 1 [Functions of Rapid Decrease and Schwartz Space]:
Let f : Rn Ñ R be a smooth function. f is said to be a function of rapid decrease if, and

only if, it holds that

sup

xPRn
|ppxqDαfpxq| ă `∞ (1.1)

for every polynomial ppxq “ ppx1, . . . , xnq and every multiindex α P Nn0 .
The collection of all functions f : Rn Ñ R of rapid decrease is named Schwartz space

and usually denoted by S pRnq - or simply S . ♠

This definition is often stated in a different way. [1, 2], for example, require

lim

‖x‖Ñ`∞ppxqDαfpxq “ 0, (1.2)

which is equivalent to the condition we required on Eq. (1.1).

Since f is smooth, all of its derivatives are continuous. The image of a compact set

through a continuous function is compact, and by the Heine-Borel Theorem this implies

the image of any closed, bounded setK Ď Rn underppxqDαfpxq is a closed, bounded subset

of R. As a consequence, ppxqDαfpxq can only escape to infinity when ‖x‖ Ñ `∞. Non-

constant polynomials always escape to infinity for ‖x‖ Ñ `∞. Therefore, if Dαfpxq Ñ λ

for some non-vanishing λ, then ppxqDαfpxq will escape to infinity at ‖x‖ Ñ `∞. If

ppxqDαfpxq Ñ λ ‰ 0 for ‖x‖ Ñ `∞, then x ¨ ppxqDαfpxq will escape to infinity. Thus,

Eq. (1.2) is implied by Eq. (1.1). If Eq. (1.2) holds, then the fact that ppxqDαfpxq can only

escape to infinity when ‖x‖Ñ `∞ ensures Eq. (1.1).

Proposition 2:
Let f : Rn Ñ R be a smooth function. f is of rapid decrease if, and only if,

‖f‖α,β “ sup

xPRn

∣∣xαDβfpxq∣∣ ă `∞,@α,β P Nn0 , (1.3)

where ‖¨‖ denotes the Euclidean norm in Rn and xα ”
śn
i“1 x

αi
i . �
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Proof:

Assume f P S and let α P Nn0 . Then supxPRn
∣∣ppxqDβfpxq∣∣ ă `∞ for every polyno-

mial ppxq “ ppx1, . . . , xnq and every multiindex β P Nn0 . Pick the polynomial ppxq “ xα.

It follows that ‖f‖α,β ă `∞.

Let us assume now that ‖f‖α,β ă `∞,@α,β P Nn0 . Notice that a polynomial in n

variables ppxq can always be written in the form ppxq “
řm
i“1 aix

αi
for some m P N,

appropriate multiindices αi P Nn0 and coefficients ai P R. Notice that given β P Nn0 , it
holds @ x P Rn that

∣∣ppxqDβfpxq∣∣ “ ∣∣∣∣∣ mÿ
i“1

aix
αiDβfpxq

∣∣∣∣∣,
ď

m
ÿ

i“1

|ai|
∣∣xαiDβfpxq∣∣. (1.4)

If we take the supremum on each side, it follows that

sup

xPRn

∣∣ppxqDβfpxq∣∣ ď sup

xPRn

#

m
ÿ

i“1

|ai|
∣∣xαiDβfpxq∣∣+,

ď

m
ÿ

i“1

|ai| sup
xPRn

∣∣xαiDβfpxq∣∣. (1.5)

Hence, supxPRn
∣∣ppxqDβfpxq∣∣ is less than or equal to a finite sum of finite terms.

Therefore, supxPRn
∣∣ppxqDβfpxq∣∣ ă `∞, and we conclude f P S . �

Theorem 3:
Consider the space S of functions of rapid decrease. Let f, g P S , λ P R. The following

statements hold

i. ‖λ ¨ f‖α,β “ |λ| ¨ ‖f‖α,β,@α,β P Nn0 ;

ii. ‖f` g‖α,β ď ‖f‖α,β ` ‖g‖α,β,@α,β P Nn0 ;

iii. S is a real vector space;

iv. ‖f‖α,β “ 0,@α,β P Nn0 ñ f “ 0. �

Proof:

Let λ P R. Notice that, for any f P S ,

‖λ ¨ f‖α,β “ sup

xPRn

∣∣xαDβpλ ¨ fqpxq∣∣,
“ sup

xPRn

∣∣λ ¨ xαDβfpxq∣∣,
“ sup

xPRn
|λ|
∣∣xαDβfpxq∣∣,

“ |λ| ¨ sup
xPRn

∣∣xαDβfpxq∣∣,
“ |λ| ¨ ‖f‖α,β. (1.6)
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Let now g P S . With f defined as before, we see that

‖f` g‖α,β “ sup

xPRn

∣∣xαDβpf` gqpxq∣∣,
“ sup

xPRn

∣∣xα`Dβfpxq `Dβgpxq˘∣∣. (1.7)

Notice that, @ x P Rn, it holds that∣∣xαDβfpxq ` xαDβgpxq∣∣ ď ∣∣xαDβfpxq∣∣` ∣∣xαDβgpxq∣∣. (1.8)

Thus, we may take the supremum on both sides and see that

sup

xPRn

∣∣xαDβfpxq ` xαDβgpxq∣∣ ď sup

xPRn

“∣∣xαDβfpxq∣∣` ∣∣xαDβgpxq∣∣‰,
‖f` g‖α,β ď sup

xPRn

“∣∣xαDβfpxq∣∣` ∣∣xαDβgpxq∣∣‰,
ď sup

xPRn

∣∣xαDβfpxq∣∣` sup

xPRn

∣∣xαDβgpxq∣∣,
“ ‖f‖α,β ` ‖g‖α,β. (1.9)

This not only proves that ‖λ ¨ f‖α,β “ |λ| ¨ ‖f‖α,β and ‖f` g‖α,β ď ‖f‖α,β ` ‖g‖α,β,
but also that S is closed under pointwise addition and multiplication by scalar, since

finiteness of ‖f‖α,β and ‖g‖α,β implies finiteness of ‖f` λ ¨ g‖α,β. Since 0 P S - for

constant functions are smooth and ‖0‖α,β “ 0 - and the space C∞pRnq of smooth functions

f : Rn Ñ R is a real vector space, we see S is a linear subspace of C∞pRnq.
Suppose f P S is such that ‖f‖α,β “ 0,@α,β P Nn0 . Then, in particular, it holds that

‖f‖0,0 “ 0, where the multiindex 0 should be understood as the n-uple p0, . . . , 0q. This

means that supxPRn |fpxq| “ 0. Since supxPRn |fpxq| ě |fpyq| ě 0,@y P Rn, we conclude

fpyq “ 0,@y P Rn. �

Definition 4 [Tempered Distribution]:
Consider the space S of functions of rapid decrease and let ϕ : S Ñ R be a linear

functional. ϕ is said to be a tempered distribution if, and only if, it holds for every function

f P S that

lim

nÑ`∞ϕpfnq “ ϕpfq (1.10)

for every sequence pfnqnPN P S N
with the property that

lim

nÑ∞ ‖fn ´ f‖α,β “ 0. (1.11)

♠

This definition is equivalent to the one found in [1], but we chose a slightly different

collection of seminorms. [1] uses the functions

‖f‖m,α “ sup

xPRn
p1` ‖x‖qm|Dαfpxq| (1.12)
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as seminorms, which can make the proof for Proposition 2 a bit more complicated, since

‖x‖ is not a n-variable polynomial due to the square root in

‖x‖ “

g

f

f

e

n
ÿ

i“1

x2i . (1.13)

[3] uses the same choice of seminorms we made, which uses a multiindex instead of a

non-negative integer, but uses the polynomial xα instead of p1` ‖x‖qm.

It is common to denote the action of a tempered distributionϕ on a function f through

xϕ, fy.

2 Formulation in Locally Convex Spaces

Let us now turn our attention to the theory of locally convex spaces. Theorem 3motivates

us to define the concept of a seminorm.

Definition 5 [Seminorm]:
Let pV,F,`, ¨q be a vector space, with F being either the real line or the complex plane.

A function ‖¨‖ : V Ñ R` is said to be seminorm on pV,F,`, ¨q whenever the following

conditions hold, @ x, y P V :

i. ‖x` y‖ ď ‖x‖` ‖y‖ (triangle inequality);

ii. ‖α ¨ x‖ “ |α|‖x‖,@α P F. ♠

One should notice the functions ‖¨‖α,β defined on the Schwartz space are seminorms.

From a topological point of view, the notion of seminorm is closely related to that of

a pseudometric. Norms are known to induce metrics. Seminorms are almost norms, but

they fail to ensure that ‖x‖ “ 0 ñ x “ 0. Thus, the “not-a-metric” induced by them fails

to ensure dpx, yq ñ x “ y.

Definition 6 [Pseudometric Space]:
Let M be a set and d : M ˆM Ñ R` be a function satisfying the following axioms,

@ x, y, z PM,

i. dpx, xq “ 0;

ii. dpx, yq “ dpy, xq;

iii. dpx, yq ď dpx, zq ` dpy, zq.

pM,dq is said to be a pseudometric space and d is said to be a pseudometric onM. ♠

Proposition 7:
Let V be a vector space over F, with F being either the real line or the complex plane, and let ‖¨‖

be a seminorm onV . If we defined : V Ñ R` bydpx, yq :“ ‖x´ y‖, pV, dq is a pseudometric space.

pV, dq is a metric space if, and only if, ‖¨‖ is a norm, id est, if it holds that ‖x‖ “ 0ñ x “ 0. �
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An issue arises when dealingwith topologies generated by pseudometrics (and hence,

with topologies generated by seminorms): the Hausdorff condition is not ensured in

general unless we have a metric.

Theorem 8:
Let pM,dq be a pseudometric space. Let, @ ε ą 0,@ x PM,

Bεpxq “ ty PM;dpx, yq ă εu. (2.1)

The set

B “ tBεpxq; ε ą 0, x PMu (2.2)

is a basis for a topology onM. Furthermore, the topology generated by B is Hausdorff if, and only

if, pM,dq is a metric space. �

Corollary 9:
Let V be a vector space over F, with F being either the real line or the complex plane, and let

‖¨‖ be a seminorm on V . Let τ be the topology induced by ‖¨‖. pV, τq is Hausdorff if, and only if,

‖¨‖ is a norm. �

TheHausdorff axiom is equivalent to the statement that every net defined on the space

admits at most one limit point, id est, to the uniqueness of limits of nets. Hence, we may

state the following result.

Corollary 10:
Let V be a vector space over F, with F being either the real line or the complex plane, and let

‖¨‖ be a seminorm on V . Let τ be the topology induced by ‖¨‖. ‖¨‖ is a norm if, and only if, every

net txαuαPI defined on V has at most one limit point. �

The problem we are having with the present construction is the fact that we are not

providing information on how to separate points. Since dpx, yq “ 0 doesn’t imply that

x ‰ y, we have no criterion to topologically distinguish two given points.

We can solve this issue without requiring a norm if we equip the space with multiple

seminorms (and as a consequence multiple pseudometrics) and impose a condition on the

family of seminorms that allows us to distinguish points from a topological point of view.

Definition 11 [Separate Points]:
Let V be a vector space over F, with F being either the real line or the complex plane,

and let Λ be a family of indices. For every λ P Λ, let ‖¨‖λ be a seminorm on V . The family

t‖¨‖λuλPΛ of seminorms is said to separate points if, and only if, ‖x‖λ “ 0,@ λ P Λ ñ x “

0. ♠

Fortunately, as stated in Theorem 3, the seminorms ‖¨‖α,β separate points.

With these definitions, we might now define what is a locally convex space.

Definition 12 [Locally Convex Space]:
Let X be a vector space over F, with F being either the real line or the complex plane,

and letΛ be a family of indices. Let t‖¨‖λuλPΛ be a family of seminorms onX that separates
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points. pX, t‖¨‖λuλPΛq (which we will usually denote simply as X, whenever t‖¨‖λuλPΛ is

well understood) is said to be a locally convex space. The natural topology on such a space

(which is always supposed to be equipped in it, unless we state otherwise) is the weak

topology thatmaintains all of the seminorms, the addition of vectors and themultiplication

by scalars continuous. ♠

We must notice that this construction does ensure the Hausdorff axiom.

Theorem 13:
Every locally convex space is Hausdorff. �

Proof:

Let pX, t‖¨‖λuλPΛq be a locally convex space. For each λ P Λ,y P X let ρλ,ypxq ”

‖x´ y‖λ,@ x P X. Every such function ρy,λ is a continuous function. Indeed, ρy,λ is the

composition of the functions ‖¨‖λ and x ÞÑ x´y, which are both continuous in the natural

topology by hypothesis.

Let x, y P X, x ‰ y. We know that there is λ P Λ such that ‖x´ y‖λ ‰ 0 (otherwise,

since the family of seminorms separates points, it would hold that x “ y). Let ε “
1
3
‖x´ y‖λ. Consider the sets O “ ρ´1x,λ pr0, εqq and U “ ρ

´1
y,λ pr0, εqq. Since r0, εq is open

in the relative topology on R` and the functions ρz,λ are continuous, O and U are open.

Since ρz,λpzq “ ‖z´ z‖λ “ 0,@ z P X, it holds that x P O and y P U. We want to prove that

OXU “ ∅. Suppose z P OXU.

Since z P O, it holds that ‖x´ z‖λ ă ε. Since z P U, it also holds that ‖y´ z‖λ ă ε.
The triangle inequality yields us that

3ε “ ‖x´ y‖λ,
ď ‖x´ z‖λ ` ‖y´ z‖λ,
ă 2ε, (2.3)

which is a contradiction. Therefore, we conclude E z P O X U, id est, O X U “ ∅. This

proves that X is indeed a Hausdorff space. �

If we equip S with the weak topology generated by the seminorms ‖¨‖α,β, by vector

addition and multiplication by scalar, then S is, by construction, a locally convex space.

The name “locally convex space” is motivated by the fact that such spaces admit a

system of nuclei - id est, a neighborhood basis at the origin - comprised exclusively of

convex sets[3].

Proposition 14:
Let pX, t‖¨‖λuλPΛq be a locally convex space. Let

Nλ1,...,λn;ε ”
 

x P X; ‖x‖λi ă ε, 1 ď i ď n
(

. (2.4)

The set N “ tNλ1,...,λn;ε; λi P Λ, 1 ď i ď n, ε ą 0u is a system of nuclei for the natural

topology on X. �

Let us recall an important result from General Topology[4].
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Theorem 15:
Let pX, τXq and pY, τYq be topological spaces and f : X Ñ Y be a function. f is continuous

at x P X if, and only if, the net pfpxαqqαPI converges to fpxq for every net pxαqαPI converging to

x. �

With this at our hands, we may state and prove the following result.

Proposition 16:
Let

`

X, t‖¨‖λuλPΛ
˘

be a locally convex space. Let pxαqαPI be a net. Given a point x P X, it

holds that xα Ñ x if, and only if, ‖xα ´ x‖λ Ñ 0,@ λ P Λ. �

Proof:

ñ: Suppose xα Ñ x. Theorem 15 guarantees that, since translations are homeomor-

phisms on any linear topological space, xα ´ x Ñ 0. Since ‖¨‖λ is continuous,

@ λ P Λ, it holds, also by Theorem 15, that ‖xα ´ x‖λ Ñ 0,@ λ P Λ.

ð: Let Nλ1,...,λn;ε ”
 

x P X; ‖x‖λi ă ε,@ i P tiu
n
i“1

(

and

N “ tNλ1,...,λn;ε P τ; λi P Λ,@ i P tiu
n
i“1 , ε ą 0u . (2.5)

Proposition 14 guaranteesN is a system of nuclei for the natural topology on X. We

also know that Theorem 15 guarantees that, since translations are homeomorphisms

on any linear topological space, xα ´ xÑ 0ô xα Ñ x.

Since ‖xα ´ x‖λ Ñ 0,@ λ P Λ, we know that, given ε ą 0 and λ P Λ, Dαλ P

I;
∥∥xβ ´ x∥∥λ P r0, εq,@β ą αλ. As a consequence, we see that given N P N,

Dα P I; xβ´x P N,@β ą α. This is due to the fact that givenα,β P I, Dγ P I;γ ą α,β.

SinceN is determined by finitely many indices λi, we can use induction to find α P I

with α ą αλi for every i.

Since every neighborhood of 0 can be written in terms of such sets N P N, it follows

that xα ´ xÑ 0, proving the result. �

Corollary 17:
Consider a sequence pfnqnPN P S N

. Given a function f P S , it holds that limnÑ`∞ fn “ f
in the natural topology of S if, and only if, limnÑ`∞ ‖fn ´ f‖α,β “ 0,@α,β P Nn0 . �

In general, the topology generated by a family of seminorms won’t be that of a metric

space. Nevertheless, there are some conditions under which this holds[3].

Theorem 18:
Let X be a locally convex space. The following statements are equivalent:

i. X is metrizable;

ii. the topology on X is generated by a countable family of seminorms. �

The seminorms ‖¨‖α,β generating the topology on the Schwartz space are indexed by

elements of the set Nn0 ˆ Nn0 “ N2n0 , which is a finite Cartesian product of a countable

set. Hence, it is also countable. We see then that the topology on S is generated by a

countable family of seminorms, and as a consequence we conclude S is metrizable.
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Theorem 19:
A linear functional ϕ : S Ñ R is a tempered distribution if, and only if, it is continuous in

the natural topology of S . �

Proof:

Let us begin by assuming ϕ is a tempered distribution. Given a function f P S , we

know

lim

nÑ`∞ xϕ, fny “ xϕ, fy (2.6)

for every sequence pfnqnPN P S N
with the property that

lim

nÑ∞ ‖fn ´ f‖α,β “ 0. (2.7)

Corollary 17 tells us such sequences are precisely the sequences with fn Ñ f in the

natural topology of S . Therefore, we know limnÑ`∞ xϕ, fny “ xϕ, fy for every sequence

pfnqnPN converging to f.

We know S is metrizable, and thus there is a metric d : S ˆS Ñ R` that generates

the natural topology on S . The statement on Theorem 15 can be weakend in a metric

space[4]: a function ψ : S Ñ R is continuous at a point g P S if, and only if, the sequence

pxψ, gnyqnPN converges to xψ, gy for every sequence pgnqnPN converging to g.

Since limnÑ`∞ xϕ, fny “ xϕ, fy for every sequence pfnqnPN converging to f, we con-

clude ϕ is continuous at f in the natural topology of S . Since the argument holds for

every f P S , ϕ is continuous.

One should notice that all results used in this proof were equivalences, and thus the

same argument holds in the opposite direction. Therefore, if ϕ : S Ñ R is a continuous

linear functional, it is a tempered distribution. �

Corollary 20:
The topological dualS 1

of the Schwartz spaceS is precisely the space of tempered distributions.

�
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