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1 Introduction
In this text, we’ll be working with the Minkowski spacetime (ℝ2, 𝜂𝑎𝑏 ), where the metric 𝜂𝑎𝑏 is given
in inertial, Cartesian coordinates by

d𝑠2 = − d𝑡2 + d𝑥2 . (1.1)

The choice of working in only two coordinates is to simplify the computations, but many of our
results can be generalized to more dimensions in a straightforward manner.

The notation and conventions here employed follow closely those used by Wald (1984), which
corresponds to the + + + sign convention in the Misner, Thorne, and Wheeler (1973) classification.
As for the indices, we employ abstract index notation (see Geroch 2013; Wald 1984): Latin indices
such as 𝑎, 𝑏, 𝑐, etc are used to represent tensors themselves and Greek indices such as 𝜇, 𝜈, 𝜌, etc
to indicate components with respect to some choice of coordinates. When, and if necessary, we’ll
explicitly indicate whether the Latin indices correspond to spatial tensor, in which case we’ll usually
employ the letters 𝑖, 𝑗, 𝑘, etc.
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2 Rindler Universe

2.1 Accelerated Observers

Typically, when considering the Minkowski spacetime, one understands time as given by the vector
𝑡𝑎 ≡ ( 𝜕

𝜕𝑡)
𝑎
(𝑡 being the inertial coordinate that occurs on Eq. (1.1) on the preceding page). This

corresponds to the proper time of inertial observers moving through spacetime four-velocity given
by 𝑢𝑎 = 𝑡𝑎. The time parameter 𝑡 can be recovered from this vector field by imposing that it be the
function on spacetime such that 𝑡𝑎∇𝑎 𝑡 = 1.

One of the main properties of this vector field is that it is one of the Killing fields of Minkowski
spacetime, i.e., the one-parameter group generated by this vector field corresponds to an isometry
of theMinkowski metric (see, e.g., Wald 1984, App. C). In other words, it is one of the generators of
the Poincaré group, being responsible for generating the time-translations of Minkowski spacetime.

However, one can often pick other generators of the Poincaré group as a “notion of time”. Let
us consider the vector field given by

𝑏𝑎 = 𝜅(𝑥( 𝜕𝜕𝑡)
𝑎
+ 𝑡( 𝜕𝜕𝑥)

𝑎
), (2.1)

where 𝜅 > 0 is a constant. One can show that this is also a Killing field for the Minkowski metric.
Let us figure out its physical meaning by considering which sorts of curves run parallel to it, i.e., we
want to consider which curves have a tangent 𝑏𝑎. In inertial coordinates, we are trying to solve

{
𝑡̇ = 𝜅𝑥,
𝑥̇ = 𝜅𝑡,

(2.2)

where the dots denote differentiation with respect to a parameter. Solving the system of differential
equations we find that the curves are given by

{
𝑡(𝜏) = 𝑡0 cosh(𝜅𝜏) + 𝑥0 sinh(𝜅𝜏),
𝑥(𝜏) = 𝑡0 sinh(𝜅𝜏) + 𝑥0 cosh(𝜅𝜏),

(2.3)

where 𝑡(0) = 𝑡0 and 𝑥(0) = 𝑥0. Despite the weird form, one can recognize that the transformation in
Eq. (2.3) corresponds to a Lorentz boost with rapidity 𝑤 = −𝜅𝜏. Hence, 𝑏𝑎 is a generator of boosts
on Minkowski spacetime.

While it is interesting that 𝑏𝑎 generates a symmetry of Minkowski spacetime, this still doesn’t
give us much insight on which observers have four-velocity 𝑏𝑎. Let us begin by figuring out in which
regions of Minkowski spacetime 𝑏𝑎 can even be understood as a four-velocity, i.e., in which regions
it is timelike. We can see from Eq. (2.1) that

𝑏𝑎𝑏𝑎 = 𝜅2(−𝑥2 + 𝑡2). (2.4)

From this expression, we see that the behavior of 𝑏𝑎 as a timelike, null, or spacelike field depends on
whether |𝑥| is larger or smaller than |𝑡|.

It is easier to perceive these relations by plotting the flow parallel to 𝑏𝑎, as done on Fig. 2.1 on
the next page. We can then see that the path parallel to 𝑏𝑎 is timelike on the left and right Rindler
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Figure 2.1: Rindler wedges of Minkowski spacetime. The flow of the vector field defined on Eq. (2.1) on the
previous page is shown by the lines with arrows. We can see that 𝑏𝑎 is timelike on the left and
right wedges, I and II, but spacelike on the future and past wedges, III and IV. The vertical axis
corresponds to the 𝑡 coordinate and the horizontal axis to the 𝑥 coordinate.

wedges (the regions with −𝑥 > |𝑡| and 𝑥 > |𝑡|, respectively), but spacelike on the future and past
Rindler wedges (𝑡 > |𝑥| and −𝑡 > |𝑥|).

Hence, we can understand 𝑏𝑎 as providing a notion of time on the right and left Rindler wedges,
but we still are not sure of what observers have this notion of proper time. To figure that out, let us
impose that 𝑏𝑎𝑏𝑎 = −1, which tells us with some aid of Eq. (2.4) on the preceding page that such an
observer follows a trajectory respecting

𝑥 = ±√ 1
𝜅2

+ 𝑡2. (2.5)

Let us stick to the right Rindler wedge and pick the upper sign. With this relation in mind, let us
compute the four acceleration of this observer. It is given by

𝑎𝑎 = 𝑏𝑏∇𝑏 𝑏
𝑎, (2.6a)

𝑎𝑡 = 𝑏𝜇∇𝜇 𝑏
𝑡, (2.6b)

= 𝜅2(𝑥 𝜕𝜕𝑡 + 𝑡
𝜕
𝜕𝑥)𝑥, (2.6c)

= 𝜅2𝑡, (2.6d)
𝑎𝑥 = 𝜅2𝑥, (2.6e)

where the computation of 𝑎𝑥 goes just as that for 𝑎𝑡. Hence, we can see that

𝑎𝑎𝑎
𝑎 = 𝜅4𝜂𝑎𝑏 (𝑡(

𝜕
𝜕𝑡)

𝑎
+ 𝑥( 𝜕𝜕𝑥)

𝑎
)(𝑡( 𝜕𝜕𝑡)

𝑏
+ 𝑥( 𝜕𝜕𝑥)

𝑏
), (2.7a)

= 𝜅4(−𝑡2 + 𝑥2), (2.7b)
= 𝜅2, (2.7c)
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𝜆 =
0

𝜏 =
+∞

𝜆 = 0

𝜏 = −∞

Figure 2.2: Depiction of how the Rindler coordinates cover the right Rindler wedge. The thick black lines at
𝜆 = 0, 𝜏 = ±∞ correspond to the lines |𝑥| = |𝑡| in inertial coordinates. The hyperbolae are curves
of constant 𝜆, with larger values of 𝜆 the further away the hyperbola is from the horizon. The
straight gray lines are curves of constant 𝜏, with lines with larger positive slope corresponding to
larger values of 𝜏.

which means the acceleration of the observer following the path described by 𝑏𝑎 is √𝑎𝑎𝑎𝑎 = 𝜅.
Hence, 𝑏𝑎 corresponds to the four-velocity of an observer moving through spacetime with constant
acceleration 𝜅.

2.2 Rindler Coordinates

Let us try to find coordinates on the right Rindler wedge that explicit use the proper time of
accelerated observers as a coordinate. To do so, we can attempt at using as coordinate transformation
the expressions for Eq. (2.3) on page 2 with 𝑡0 = 0 and 𝑥0 turned into a new variable, say 𝜆. That is
to say we’ll consider the coordinate transformation given by

{
𝑡 → 𝜆 sinh(𝜅𝜏),
𝑥 → 𝜆 cosh(𝜅𝜏),

(2.8)

for 𝜆 > 0 (we’re covering only the right wedge) and 𝜏 ∈ ℝ. Notice the inverse transformation is

{
𝜆 → √𝑥2 − 𝑡2,

𝜏 → 1
𝜅 artanh( 𝑡𝑥).

(2.9)

In these coordinates, the right Rindler wedge looks like Fig. 2.2.
After a little manipulation one can see that the Minkowski metric is now written as

d𝑠2 = −𝜅2𝜆2 d𝜏2 + d𝜆2 . (2.10)
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Notice this metric can appear problematic at 𝜆 = 0, since one of the components vanishes.
While this could seem like a problem if we knew only the Rindler coordinates, we can see from
Eq. (2.9) on the previous page that 𝜆 = 0means simply that |𝑥| = |𝑡| in inertial coordinates. It is
clearly simply a feature of our choice of a coordinates, not an actual problem with spacetime itself.

2.3 Geodesics

Let us pretend we did not know that we are in Minkowski spacetime and were given the metric
Eq. (2.10) on the preceding page and asked to understand what is going on in this universe. Let us
being by finding the geodesics. Since 𝑏𝑎 = ( 𝜕

𝜕𝜏)
𝑎
is a Killing field, it holds that the quantity

𝑢𝑎𝑏𝑎 = −𝐸 (2.11)

is conserved throughout a geodesic with (affinely-parameterized) tangent 𝑢𝑎. Opening up in com-
ponents, we find that

𝜅2𝜆2𝜏̇ = 𝐸 (2.12)

is constant, where the dot denotes differentiation with respect to the geodesic’s affine parameter
(which we’ll denote 𝜁 for the time being).

From the metric of Eq. (2.10) on the previous page we get that

−𝜅2𝜆2𝜏̇2 + 𝜆̇2 = −𝑘, (2.13)

where

𝑘 = {
+1, for timelike geodesics,
0, for null geodesics.

(2.14)

Hence, one gets to the system of differential equations

{
𝜆̇2 + 𝑘 − 𝐸2

𝜅2𝜆2
= 0,

𝜏̇ = 𝐸
𝜅2𝜆2

,
(2.15)

which can be solved quite easily (for example, with Mathematica). For 𝑘 = 1 (timelike geodesics)
the solution is

{
𝜆(𝜁) = √𝐸

2

𝜅2
− (𝜁 + 𝐶1)2,

𝜏(𝜁) = 1
𝜅 artanh(𝜅(𝜁 + 𝐶1)𝐸 ) + 𝐶2,

(2.16)

where 𝐶1 and 𝐶2 are integration constants. As for 𝑘 = 0 (null geodesics), the solution is

{
𝜆(𝜁) = √2𝐸(±𝜁 + 𝐶1)

𝜅 ,

𝜏(𝜁) = ± 1
2𝜅 log (2𝜅(±𝜁 + 𝐶1)) + 𝐶2,

(2.17)
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and once again 𝐶1 and 𝐶2 are integration constants and the choice of sign must be the same in
both expressions. Notice that in all of these expressions the constant 𝐶1 is just a translation on the
parameter 𝜁, which is an irrelevant freedom for our purposes. Hence, we can write the previous
solutions as

{
𝜆(𝜁) = √𝐸

2

𝜅2
− 𝜁2,

𝜏(𝜁) = 1
𝜅 artanh(𝜅𝜁𝐸 ) + 𝐶,

(2.18)

for the timelike geodesics and as

{
𝜆(𝜁) = √±2𝐸𝜁𝜅 ,

𝜏(𝜁) = ± 1
2𝜅 log(±2𝜅𝜁) + 𝐶,

(2.19)

for the null geodesics.

Timelike Geodesics

Let us first focus on the timelike geodesics. We begin by noticing from Eq. (2.18) that at proper
time 𝜁 = −𝛦

𝜅 the particle emerges from the horizon at 𝜆 = 0 and at 𝜁 = +𝛦
𝜅 the particle vanishes again

on the horizon. Notice this happens in finite proper time.
Let us now figure out for how long the accelerated observers see the particle after it emerges

from the horizon and before it vanishes behind it again. The particle emerges from the horizon at
𝜁 = −𝛦

𝜅 , which according to Eq. (2.18) corresponds to

𝜏(−𝐸𝜅 ) =
1
𝜅 artanh(−1) + 𝐶 → −∞, (2.20)

which means the accelerated observer never saw the particle emerge from the horizon: it came from
there in the far past. Similarly, the time at which the particle vanishes again behind the horizon is,
according to the accelerated observer,

𝜏(+𝐸𝜅 ) =
1
𝜅 artanh(+1) + 𝐶 → +∞, (2.21)

and hence it takes infinite time for the particle to cross the horizon.
While this might seem odd from the point of view of the accelerated observer, it is not strange

from the point of view of an inertial observer—we never leftMinkowski spacetime and the geodesics
are simply straight lines through spacetime. Crossing the horizon means simply crossing the lines
|𝑥| = |𝑡|, and there is nothing particularly special about that. Nevertheless, the choice of Rindler
coordinates makes it seem like there is a big deal happening in there.

For completeness, we notice that by manipulating Eq. (2.18) we can write the position of the
particle in the 𝜆 coordinate as a function of the time 𝜏 as

𝜆(𝜏) = 𝐸
𝜅 sech (𝜅(𝜏 − 𝐶)). (2.22)
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Null Geodesics

As for the null geodesics, let us focus on a different aspect: what is the speed of light as perceived by
the accelerated observers?

Since light travels by null geodesics, what we want to compute is simply d𝜆
d𝜏 along a null geodesic.

In order to do this, we can use Eq. (2.15) on page 5 instead of the solutions to the equations of
motion. From Eq. (2.15) on page 5 with 𝑘 = 0we can see that

(d𝜆d𝜏)
2

= 𝜆̇2

𝜏̇2
, (2.23a)

= 𝐸2

𝜅2𝜆2
𝜅4𝜆4

𝐸2 , (2.23b)

= 𝜅2𝜆2, (2.23c)
d𝜆
d𝜏 = ±𝜅𝜆, (2.23d)

where the sign simply refers to the direction of propagation. We notice, however, that the speed of
light needs not to be one, since 𝜆 is not fixed at ± 1

𝜅 .
Let’s figure out what is the precise expression of the speed of light as a function of 𝜏. Solving for

𝜁 and substituting in the expression for 𝜏we get to

𝜏 = ± 1
2𝜅 log(𝜅

2𝜆2

𝐸 ) + 𝐶, (2.24)

and then solving for 𝜆 leads to

𝜆(𝜏) =
√𝐸
𝜅 𝑒±𝜅(𝜏−𝐶), (2.25)

from which we see that, for an accelerated observer, not only the speed of light needs not to be 1,
but it doesn’t even need to be constant. This, of course, is not in conflict with Einstein’s second
postulate of Special Relativity, which states simply that the speed of light is the same in all inertial
frames of reference.

2.4 Redshift at the Horizon

Let us assume a beacon is sent by some observer to the horizon. The beacon sends light signals with
a frequency 𝜔0 and has a rocket system such that, after moving for some time, allows it to sit at a
constant 𝜆 = 𝜆0. Assuming the observer is fixed at 𝜆, what is the frequency the observer measures
for the signals emitted by the beacon?

Both the beacon and the observer have four-velocities given by

𝑢𝑎 =
𝑏𝑎

√−𝑏𝑏𝑏𝑏
(2.26)

despite at different points. Suppose the light signal has four-momentum 𝑘𝑎, so that (ℏ = 1)

𝜔0 = − 𝑘𝑎𝑢𝑎 ∣
𝜆0
. (2.27)
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The frequency measured by the observer will be

𝜔 = − 𝑘𝑎𝑢𝑎 ∣
𝜆
. (2.28)

Recalling that 𝑘𝑎𝑏𝑎 is a constant (because 𝑘𝑎 satisfies the geodesic equation and 𝑏𝑎 is a Killing
field), we see that

𝜔0
𝜔 =

𝑘𝑎𝑢𝑎 ∣𝜆0
𝑘𝑎𝑢𝑎 ∣𝜆

, (2.29a)

=
𝑘𝑎𝑏𝑎 ∣𝜆0

√−𝑏𝑏𝑏𝑏 ∣𝜆0

√−𝑏𝑏𝑏𝑏 ∣𝜆
𝑘𝑎𝑏𝑎 ∣𝜆

, (2.29b)

=
√−𝑏𝑏𝑏𝑏 ∣𝜆
√−𝑏𝑏𝑏𝑏 ∣𝜆0

. (2.29c)

Since 𝑏𝑎 = ( 𝜕
𝜕𝜏)

𝑎
, we see from Eq. (2.10) on page 4 that 𝑏𝑎𝑏𝑎 = −𝜅2𝜆2, which leads us to

𝜔0
𝜔 = 𝜆

𝜆0
, (2.30)

i.e.,
𝜔 =

𝜆0
𝜆 𝜔0 < 𝜔0. (2.31)

Notice that the closer the beacon gets to the horizon at 𝜆0 = 0, the smaller the frequency measured
by the observer, i.e., the larger the redshift.

Let us now assume that the beacon ismoving inertially. In this case, we have (denoting 𝑙𝑎 = ( 𝜕
𝜕𝜆)

𝑎

and writing 𝑣𝑎 for the beacon’s four-velocity)

𝜔0 = − 𝑘𝑎 𝑣
𝑎∣

𝜆0
= −𝜏̇ 𝑘𝑎 𝑏

𝑎∣
𝜆0
− 𝜆̇ 𝑘𝑎 𝑙

𝑎∣
𝜆0
. (2.32)

Let us write 𝑘𝑎 = 𝑘𝜏𝑏𝑎 + 𝑘𝜆𝑙𝑎. Since 𝑘𝑎𝑘𝑎 = 0, we have at 𝜆0

−𝜅2𝜆20𝑘
𝜏2 + 𝑘𝜆2 = 0, (2.33)

and hence
𝑘𝜆 = 𝜅𝜆0𝑘

𝜏, (2.34)

the choice of sign being so that the light ray is future-directed and moves towards increasing values
of 𝜆. Notice, however, that 𝑘𝑎 𝑙𝑎∣𝜆0 = 𝑘𝜆 and 𝑘𝑎 𝑏

𝑎∣
𝜆0
= −𝜅2𝜆20𝑘

𝜏. Hence, we managed to show that

𝑘𝑎 𝑙
𝑎∣

𝜆0
= − 1

𝜅𝜆0
𝑘𝑎 𝑏

𝑎∣
𝜆0
. (2.35)
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As a consequence, we now know that

𝜔0 = −(𝜏̇ − 𝜆̇
𝜅𝜆0

) 𝑘𝑎 𝑏
𝑎∣

𝜆0
. (2.36)

From Eq. (2.15) on page 5 we see that

𝜔0 = −( 𝐸
𝜅2𝜆20

+ 1
𝜅𝜆0

√ 𝐸2

𝜅2𝜆20
− 1) 𝑘𝑎 𝑏

𝑎∣
𝜆0
, (2.37)

where we chose 𝜆̇ < 0 so that the particle is moving towards the horizon. We still need to fix the
constant 𝐸 (which corresponds to choosing the initial conditions for the particle), but we’ll do it
later. For now, let us recall that the frequency measured by the observer is

𝜔 = − 𝑘𝑎 𝑢
𝑎∣

𝜆
= −

𝑘𝑎 𝑏
𝑎∣
𝜆

√𝑏𝑏 𝑏
𝑏∣
𝜆

= −
𝑘𝑎 𝑏

𝑎∣
𝜆0

√𝑏𝑏 𝑏
𝑏∣
𝜆

, (2.38)

which allows us to rewrite

𝜔0 = ( 𝐸
𝜅2𝜆20

+ 1
𝜅𝜆0

√ 𝐸2

𝜅2𝜆20
− 1)√𝑏𝑏 𝑏

𝑏∣
𝜆
𝜔. (2.39)

We already know that √𝑏𝑏 𝑏𝑏∣𝜆 = 𝜅𝜆, and hence

𝜔0 = 𝜅𝜆( 𝐸
𝜅2𝜆20

+ 1
𝜅𝜆0

√ 𝐸2

𝜅2𝜆20
− 1)𝜔. (2.40)

We can’t proceed further without specifying 𝐸, so let us assume that the observer dropped the
beacon from rest with respect to the observer at 𝜏 = 0. Imposing this on Eq. (2.22) on page 6 leads
to 𝐸 = 𝜅𝜆, and hence the redshift will be such that

𝜔0 =
𝜆
𝜆0
( 𝜆𝜆0

+ √𝜆
2

𝜆20
− 1)𝜔. (2.41)

This time the redshift depends on time, but we can use Eq. (2.22) on page 6 to describe it. The
beacon moves in the trajectory

𝜆0(𝜏) = 𝜆 sech(𝜅𝜏), (2.42)

where 𝜆 is the observer’s position and 𝜏 is the Rindler coordinate. Rearranging our previous
expression leads us to

𝜔 = 𝑒−𝜅𝜏 sech(𝜅𝜏)𝜔0, for 𝜏 > 0, (2.43)

where the condition on 𝜏 is due to manipulation of the square root (also, we assumed the beacon is
dropped at 𝜏 = 0, so whatever happens before that is not of our interest). Hence, we see that there
is an exponential redshift of the signal of the beacon.
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Combining this with our previous computation that is takes infinite time for the beacon to
cross the horizon, we see that the accelerated observer will see the beacon approaching the horizon
asymptotically and, as it does, they will see the beacon becoming redder and redder due to the
redshift effects. While they will never see the beacon crossing the horizon, the redshift will eventually
be so large that the light emitted or reflected by the beacon will be too far on the infrared to be
visible to the naked eye and the observer will no longer see the beacon.

2.5 Crossing the Horizon

Let us make a change of coordinates on the Rindler universe so we can explore a bit beyond the
horizon. Let us define a new coordinate 𝜌 = 𝜆2

4 . Using this definition, the metric on Eq. (2.10) on
page 4 becomes

d𝑠2 = −4𝜅2𝜌 d𝜏2 + 1
𝜌 d𝜌2 . (2.44)

By rescaling 𝜏we can redefine the coordinates so that the metric reads

d𝑠2 = −𝜌 d𝜏2 + 1
𝜌 d𝜌2 (2.45)

We know the Rindler universe corresponds to the region 𝜌 > 0. The region with 𝜌 = 0 now
appears singular, but sincewe never really leftMinkowski spacetimewe know this is just a coordinate
singularity. A trick for us to get rid of the coordinate singularity is to employ Eddington–Finkelstein-
like coordinates: we compute the spacetime’s null geodesics and see howwe can index each incoming
or outgoing geodesic by a number, and then employ these numbers as coordinates.

First we begin by computing the null geodesics. Imposing d𝑠2 = 0 on Eq. (2.45) leads us to

𝜌 d𝜏2 = 1
𝜌 d𝜌2 , (2.46)

which we can recast as the differential equation

d𝜏
d𝜌 = ±1𝜌, (2.47)

where the sign corresponds to whether the light ray is incoming or outgoing, i.e., to whether it
approaches or gets away from the horizon. Solving the differential equation leads us to

𝜏 = ± log ∣𝜌∣ + 𝐶, (2.48)

where 𝐶 is a constant. Let us consider the case

𝜏 + log ∣𝜌∣ = 𝑣, (2.49)

for constant 𝑣. Notice that this is an incoming light ray: as 𝜏 grows, 𝜌 > 0must become smaller for 𝑣
to remain constant. Let us now employ 𝑣 as a coordinate on spacetime. Since d𝑣 = d𝜏 + 1

𝜌 d𝜌, one
has from Eq. (2.45) that the metric can now be written as

d𝑠2 = −𝜌 d𝑣2 + 2 d𝑣d𝜌 , (2.50)
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Figure 2.3: Depiction of how the coordinates of Eq. (2.50) on the previous page cover the right and future
Rindler wedges. The thick black lines at 𝜌 = 0 correspond to the lines |𝑥| = |𝑡| in inertial
coordinates, and 𝑣 = −∞ on 𝑥 = −𝑡. The hyperbolae are curves of constant 𝜌, with larger values
of 𝜆 the further away the hyperbola is from the horizon for the right Rindler wedge, and
more negative values the further away the hyperbola is from the horizon for the future Rindler
wedge. The straight gray lines are curves of constant 𝑣. The expressions for inertial coordinates of
Minkowski spacetime in terms of the coordinates of Eq. (2.50) on the preceding page that allow
for this diagram to be drawn are computed on Section 2.6.

which is no longer singular at 𝜌 = 0. In fact, now the coordinates 𝜌 < 0 are perfectly valid, and
hence we can extend the Rindler universe to comprehend the region 𝜌 < 0 as well. With these
considerations, it can be shown (see Section 2.6) that the region of Minkowski spacetime covered
by these coordinates ranging from −∞ to +∞ is the one shown in Fig. 2.3, which corresponds to the
right and future Rindler wedges.

Let us compute the geodesics in these new coordinates. Firstly, we compute the null geodesics.
They respect

−𝜌(d𝑣d𝜁)
2

+ 2d𝑣d𝜁
d𝜌
d𝜁 = 0, (2.51)

where 𝜁 is an affine parameter. There are two possibilities—namely,

𝑣 = 𝐶 or 𝜌 = 𝐶𝑒
𝑣
2 , (2.52)

where 𝐶 is a constant.
As for the timelike geodesics, the Lagrangian for the metric is

𝐿 = −
𝜌𝑣̇2

2 + 𝑣̇𝜌̇, (2.53)
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and hence the Euler–Lagrange equations read

{𝑣̈ +
𝑣̇2

2 = 0,

𝜌̇ − 𝜌𝑣̇ = −𝐶,
(2.54)

for some integration constant 𝐶. Imposing on the metric that the solution is timelike gives us that

−𝜌(d𝑣d𝜁)
2

+ 2d𝑣d𝜁
d𝜌
d𝜁 = −1, (2.55a)

−𝜌(𝐶𝜌 +
𝜌̇
𝜌)

2

+ 2
𝐶𝜌̇
𝜌 +

2𝜌̇2

𝜌 = −1. (2.55b)

Rearranging the expression we get to
𝜌̇2 = 𝐶2 − 𝜌. (2.56)

The differential equation is separable, and its solution is given by

𝜌(𝜁) = 𝐶2 − 1
4(𝜁 + 𝐶1)

2, (2.57)

for any constant 𝐶1. Since 𝐶1 simply shifts the 𝜁 variable, we’ll take it to be zero for simplicity. As
for 𝑣, it is given by

𝑣̇ =
𝐶 − 1

2𝜁
𝐶2 − 1

4𝜁2
= 𝐶 + 1

2𝜁. (2.58)

Integrating, we get to
𝑣(𝜁) = 2 log |2𝐶 + 𝜁| + 𝐶2, (2.59)

for some integration constant 𝐶2.
From Eq. (2.57) we can see that, in a finite time proper time, the particle emerges from 𝜌 ≤ 0 and

in a finite proper time it dives back to 𝜌 ≤ 0. Even though the particle spends an infinite amount of
time in the region with 𝜌 > 0when measured by an accelerating observer, in the particle’s reference
frame this happens in a finite amount of time. If we employ the expression for 𝑣(𝜁), we find that
the motion of the particle is described in (𝑣, 𝜌) coordinates as

𝜌(𝑣) = −14𝑒
𝑣 + 𝐶1𝑒

𝑣+𝐶2
2 , (2.60)

where the constants 𝐶1 and 𝐶2 are arbitrary. In this coordinates, the particle crossed the horizon in
the infinitely far past, spends an infinite amount of time in the 𝜌 > 0 region, but in a finite time it
crosses back to 𝜌 ≤ 0.

2.6 Recovering Minkowski Spacetime

Let us start from the metric on Eq. (2.45) on page 10 and work our way back to Minkowski
coordinates. This will also allow us to get the expressions needed to draw Fig. 2.3 on the previous
page, and is an exercise on how to get to the so-called Kruskal extension of the Schwarzschild
spacetime.
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Previously we found that in the (𝜏, 𝜌) coordinates the null geodesics could be written as in
Eq. (2.48) on page 10. We then proceeded to define the new coordinate

𝑣 = 𝜏 + log ∣𝜌∣, (2.61)

which we now supplement with the definition

𝑢 = 𝜏 − log ∣𝜌∣. (2.62)

The inverse transformations are given by

𝜏 = 𝑢 + 𝑣
2 and 𝜌 = ±𝑒

𝑣−𝑢
2 . (2.63)

Using these expressions, we can show that Fig. 2.3 on page 11 can be rewritten as

d𝑠2 = ∓𝑒
𝑣−𝑢
2 d𝑢d𝑣 , (2.64)

where the upper sign refers to the region with 𝜌 > 0 and the lower sign to the region with 𝜌 < 0.
Hence, this choice of coordinates still does not allow us to analyze what is going on at the apparently
problematic region with 𝜌 = 0.

Let us try to remove this factor from the front of d𝑢 d𝑣. In order to do so, let us notice that in
the metric given in the form of Eq. (2.45) on page 10, ( 𝜕

𝜕𝜏)
𝑎
is a Killing field. Hence, if 𝑘𝑎 is tangent

to a null geodesic, the quantity

𝐸 = −𝑘𝑎 (
𝜕
𝜕𝜏)

𝑎
= 𝜌d𝜏

d𝜆 (2.65)

is conserved, where 𝜆 is an affine parameter along the geodesic. Our point with this is that we can
try to solve for the affine parameter and use it as a coordinate, which will lead to a coordinate choice
naturally adapted to the null geodesics of the spacetime, and hence simpler than our simple choice
of “pick a constant for each geodesic”.

We can rewrite the previous equation as

d𝜆 =
𝜌
𝐸 d𝜏 , (2.66a)

= ±𝑒
𝑣−𝑢
2

2𝐸 d(𝑢 + 𝑣) . (2.66b)

If we keep 𝑢 constant (i.e., if we consider an outgoing geodesic), integrating the expression will lead
us to

𝜆 = ±𝑒
𝑣−𝑢
2

𝐸 + constant, (2.67)

and hence we see that ±𝑒
𝑣
2 is an affine parameter along the outgoing null geodesics. Similarly, one

finds that ∓𝑒−
𝑢
2 is an affine parameter along the incoming null geodesics. Hence, we’ll define the

new coordinates
𝑉 = 𝑒

𝑣
2 and 𝑈 = ∓𝑒−

𝑢
2 . (2.68)

The lack of sign in the front of 𝑉 is due to a coordinate ambiguity we’ll come back to in a few
paragraphs. Discuss this

(Minkowski
“white hole”).
For now, we’e
considering 𝑉 > 0
only.
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Using these new coordinates, Eq. (2.64) on the previous page can be rewritten as

d𝑠2 = − d𝑈 d𝑉 . (2.69)

If we now define
𝑈 = 𝑇 − 𝑋 and 𝑉 = 𝑇 + 𝑋, (2.70)

then we get to
d𝑠2 = − d𝑇2 + d𝑋2 , (2.71)

which is just the Minkowski metric.
If we go back to Eqs. (2.63) and (2.68) on the preceding page, we can see that

𝜌 = −𝑈𝑉 (2.72)

and Eq. (2.70) implies
𝜌 = −𝑇2 + 𝑋2. (2.73)

Notice then that the same value of 𝜌 is given to two parts of a hyperbola in the original
Minkowski diagram, Fig. 2.1 on page 3. Namely, there is a hyperbola with 𝜌 = 𝜌0 > 0 on the
right Rindler wedge, but a symmetrical hyperbola in the left wedge with the same value. These sorts
of ambiguity in the coordinates gained an example in our choices of sign for 𝑉 and𝑈 on Eq. (2.68)
on the previous page—notice that the choices of sign correspond to each of the different Rindler
wedges:

• right wedge: 𝑈 < 0, 𝑉 > 0;

• left wedge: 𝑈 > 0, 𝑉 < 0;

• future wedge: 𝑈 > 0, 𝑉 > 0;

• past wedge: 𝑈 < 0, 𝑉 < 0.

Our choice of signs corresponded to the future and right wedges, but we could have chosen different
ones. Notice that once we get to the inertial coordinates, we realize there is nothing forbidding
us from considering values of 𝑉 smaller than zero, and similar conclusions would hold for other
sign choices. In all possibilities, we eventually arrive at the conclusion that we can consider a
larger complete spacetime. The lesson is that some coordinate choices might not cover the whole
spacetime, and there’s nothing really wrong with it. To deal with these issues, we ask in General
Relativity for spacetimes to be inextendible (for more detail, see, e.g., Hawking and Ellis 1973, Sec.
3.1).

Notice also that from Eqs. (2.68) and (2.70) on the preceding page and on the current page we
find that

𝑣 = 2 log |𝑇 + 𝑋|. (2.74)

From Eqs. (2.73) and (2.74) we can draw Fig. 2.3 on page 11 by plotting the curves of constant
𝜌 or 𝑣 in the future and right wedges (notice we could have also chosen to do a similar figure with
the past and left wedges).
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2.7 Conclusions

Let us explicitly write some conclusions we can obtain from our analysis of the Rindler universe.
Firstly, we notice how different observers can be associated with different notions of time. While

inertial observers in Minkowski spacetime have their four-velocity aligned to some timelike Killing
field, accelerated observers follow a different Killing field. We could, of course, consider observers
whose four-velocities aren’t even Killing fields, although the lack of symmetry in those situations
might limit the computations we can make.

Furthermore, we can noticewhat an important role the coordinates play in our perception of the
results we compute. While inertial coordinatesmake geodesicmotion inMinkowski spacetime quite
simple, our choice of working in different sets of coordinates made the motion quite complicated
and led to weird consequences, such as the appearance of an event horizon in the form of coordinate
singularities and infinite redshifts of bodies that took infinitely long to cross the horizon. Of course,
by going back to Minkowski coordinates we notice that much of the weirdness was coordinate-
induced, and hence does not correspond to anything intrinsically problematic about the spacetime.

While this might seem silly in this context, it is important to pay attention to these issues, since
very similar situations occur, for example, when dealing with black holes. In those cases, we often
face the coordinates which suggest trouble at a certain value before we find the “nice” coordinates
that make the general structure simpler. That might lead to the wrong impression that something
extraordinary is happening at a coordinate singularity, but that need not to be the case.

We could also notice how a choice of coordinates might not cover the whole spacetime, but only
a portion of it. For a Rindler universe, we managed to find coordinates that could fill the whole
Minkowski spacetime. Nevertheless, that is not always the case. For example, it is not possible to
cover a sphere with a single continuous coordinate chart1.

In general, we see that we should be always careful with conclusions that depend too much
on coordinates. While they are useful computational tools, different coordinate choices can tell
different stories about the physical reality and it is important to watch out for which features of
spacetime are due to the manifold itself and which are merely due to the particular coordinate
choice one is working on.

3 Milne Universe

3.1 Milne Coordinates

Let us consider the coordinate transformation Eq. (2.8) on page 4 once again, but this time let us
try to employ it on the future light cone of the origin2. Since we now have 𝑡 > |𝑥|, we’ll define the

1The reason lies in Topology and is that the sphere and the plane are not homeomorphic. A way of seeing this is by
noticing that the sphere is compact, but the plane is not.

2In two spacetime dimensions, the future light cone of the origin corresponds to the future Rindler wedge. However,
in more dimensions these are different concepts. The future light cone is given by 𝑡 > 𝑟 (where 𝑟 is the radial coordinate),
while the future Rindler wedge is given by 𝑡 > |𝑥| (where 𝑥 is some Cartesian coordinate). We’ll keep our computations
in two dimensions for simplicity, but keep in mind that one must be careful when comparing the Rindler and Milne
universes in more dimensions.
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𝜆 =
+∞

𝜏 =
0

𝜆 = −∞

𝜏 = 0

Figure 3.1: Depiction of how the Milne coordinates cover the future light cone. The thick black lines at 𝜏 = 0,
𝜆 = ±∞ correspond to the lines |𝑥| = |𝑡| in inertial coordinates. The hyperbolae are spatial curves
of constant 𝜏, with larger values of 𝜏 the further up the hyperbola is. The straight gray lines are
curves of constant 𝜆, with values of 𝜆 growing as one moves from 𝑡 = −𝑥 to 𝑡 = +𝑥.

change of coordinates as

{
𝑡 → 𝜏 cosh 𝜆,
𝑥 → 𝜏 sinh 𝜆,

(3.1)

for 𝜏 > 0 (we’re covering only the future wedge) and 𝜆 ∈ ℝ. The inverse transformation is

{
𝜆 → artanh(𝑥𝑡 ),

𝜏 → √𝑡2 − 𝑥2.
(3.2)

In these coordinates, the future light cone looks like Fig. 3.1.
As one might guess by checking the computations for the Rindler universe, the metric for the

future light cone in these coordinates is given by

d𝑠2 = − d𝜏2 + 𝜏2 d𝜆2 . (3.3)

This is known as the Milne universe.

3.2 FLRW Spacetime

One might notice that Eq. (3.3) is a Friedmann–Lemaître–Robertson–Walker (FLRW) metric
(Hawking and Ellis 1973, Sec. 5.3; Wald 1984, Chap. 5). Hence, it is spatially homogeneous and
isotropic. A way of noticing it is by realizing that the components of Eq. (3.3) do not depend on 𝜆,
for ( 𝜕

𝜕𝜆)
𝑎
is a Killing field (in fact, it is just the boost Killing field, which is spacelike in this region of

Minkowski spacetime).
As one can read from Eq. (3.3), the scale factor of the Milne model is given by

𝑎(𝜏) = 𝜏. (3.4)

3.3 Cosmic Observers

It is interesting then for us to ask who are the cosmic observers in the Milne universe, i.e., who are
the observers with four-velocities given by 𝑢𝑎 = ( 𝜕

𝜕𝜏)
𝑎
(notice these four-velocities are appropriately
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normalized). To figure this out, let us begin by computing the acceleration of these observers. In
order to do so, we’ll need the Christoffel symbols for the Milne metric. The non-vanishing ones are
given by

Γ𝜏𝜆𝜆 = 𝜏 and Γ𝜆𝜏𝜆 =
1
𝜏 (3.5)

or can obtained from these by symmetry. This can be seen, e.g., with Mathematica by means of a
package aimed at General Relativity, such as OGRe (Shoshany 2021).

The acceleration of the cosmic observers will be then given by

𝑎𝑎 = 𝑢𝑏∇𝑏 𝑢
𝑎, (3.6a)

𝑎𝜇 = 𝑢𝜈𝜕𝜈𝑢
𝜇 + Γ𝜇𝜈𝜌𝑢𝜈𝑢𝜌, (3.6b)

= 𝜕𝜏𝑢
𝜇 + Γ𝜇𝜏𝜏, (3.6c)

= 0, (3.6d)

i.e., the cosmic observers are not accelerating. In other words, they are inertial observers.
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