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1 Manifolds

This is a text on Mathematical Physics, and thus it could sound weird to talk about
cartography in here. Nevertheless, I ask you to trust me that this discussion will lead us
to some interesting concepts and consequences.

Our current goal is to make a good map of the Earth, which we shall consider as a
perfect sphere∗. This being a text on Mathematics, “good map” might sound somewhat
vague, and thus we must be more specific.

Let us consider the unit 2-sphere given by

S2
 

x P R3; ‖x‖ “ 1
(

, (1.1)

where the norm ‖¨‖ is the Euclidean norm in R3. Our goal is to find a homeomorphism
ϕ : S2 Ñ R2. Such a function would allow us to map each point of the Earth’s surface (here
represented by S2) to a single point in our map in a continuous way, so close points in the
Earth are represented by close points in our map.

Unfortunately, this is an impossible task. S2 is the boundary of the set B1p0q (the
open ball centered at the origin with unitary radius), and we know that given a set A, it
holds that BA “ BA, id est, the boundary of A is always closed. Furthermore, S2 Ď B2p0q,
meaning it is a bounded set. As a closed and bounded set, the Heine-Borel Theorem
ensures it is a compact set.

On the other side, R2 is open, but it is not bounded. Hence, the Heine-Borel Theorem
guarantees R2 is not a compact set.

Since compactness is preserved by homeomorphisms, it is impossible to obtain a
homeomorphism between a compact set such as S2 and a non-compact set such as R2.
Thus, there is no such thing as a perfect map.

In the absence of a perfect map, we must content ourselves with simpler versions.
What is our possible option?

Cartographers might not be able to produce a single map of the entire Earth at once
which happens to be a homeomorphism, but it is still possible to map the Earth. We have
two options: either we abandon our requirement of continuity - and then we may get
something as the Mercator projection, which maps the entire Earth but is not continuous
everywhere - or we may abandon the idea of mapping the entire Earth at once and stick

∗With apologies to the Flat Earth Community
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to continuity. This second option would still allow us to make an atlas if we are careful
enough. A single chart can’t describe the whole Earth at once, but maybe 12 charts can.

In this text, we are interested in studying the case in which we stick to continuity and
abandon the desire of mapping the whole Earth at once. The other possibility we leave
for the cartographers to explore.

Our goal now is to obtain a way of finding a certain amount of “charts” pU,ϕq, where
U is an open set in S2 and ϕ : U Ñ Ranϕ Ď R2 is a homeomorphism (notice this implies
Ranϕ is an open set in R2, since ϕ is an open map), such that the collection of all such
charts covers S2 as a whole.

Example [Charting S2]:
This requirement is easy to be fulfilled Let us split S2 in six parts given by

U˘i ”
 

px1, x2, x3q P S2; signpxiq “ ˘1
(

. (1.2)

These sets are open, for they are of the form

U`1 “ S
2 X tpx1, x2, x3q P R; x1 ą 0u , (1.3)

id est, they are the intersection of the subspace we are considering S2 with an open set in
the ambient space R3.

These sets do cover S2. Let px1, x2, x3q P S2. If px1, x2, x3q R U`1 YU
´
1 , then it must hold

that x1 “ 0. If px1, x2, x3q R U`2 YU
´
2 , then it must hold that x2 “ 0. Since x21 ` x22 ` x23 “ 1,

this implies x3 “ ˘1, and hence px1, x2, x3q P U`3 YU
´
3 .

We may now consider the maps ϕ˘1 : U˘i Ñ B1p0q given by ϕ˘1 ppx1, x2, x3qq “ px2, x3q
with similar definitions for ϕ˘i . We shall prove ϕ˘1 is a homeomorphism. The remaining
cases are similar.

Let us begin by proving ϕ`1 is invertible. ϕ`1 is onto. Indeed, given px2, x3q P B1p0q, it
holds that

ˆ

b

1´ x22 ´ x23, x2, x3
˙

P U`1 , (1.4)

since
b

1´ x22 ´ x23
2
` x22 ` x

2
3 “ 1´ x22 ´ x23 ` x22 ` x23,

“ 1 (1.5)

and
b

1´ x22 ´ x23 ą 0. Notice that

ϕ`1

ˆˆ

b

1´ x22 ´ x23, x2, x3
˙˙

“ px2, x3q. (1.6)

Furthermore, ϕ`1 is one-to-one. Suppose py, x2, x3q, pz, x2, x3q P U`1 are such that

ϕ`1 ppy, x2, x3qq “ ϕ
`
1 ppz, x2, x3qq “ px2, x3q. (1.7)
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Then notice that

z2 ` x22 ` x
2
3 “ 1,

z2 “ 1´ x22 ´ x23,

z “ `

b

1´ x22 ´ x23, (1.8)

where the last step used the fact that z ą 0. The same argument applies to y, and hence
y “ z and we conclude py, x2, x3q “ pz, x2, x3q. Hence, ϕ`1 is bĳective.

We now must prove ϕ`1 and its inverse are continuous. Notice that the components
of ϕ`1 are simply the projections πi ppx1, x2, x3qq “ xi (which are continuous when R3

is equipped with the product topology, and it is) restricted to U`1 , and hence they are
continuous in the relative topology.

The inverse is also continuous andone canprove it by employing the fact that a function
f : Y Ñ

Ś

λPΛ Xλ is continuous if, and only if, all the coordinate functions pπλ ˝ fq : Y Ñ Xλ
are continuous.

Notice that pπ2 ˝ ϕ`1
´1
qpx2, x3q “ x2 with a similar expression for π3 and pπ2 ˝

ϕ`1
´1
qpx2, x3q “

b

1´ x22 ´ x23. Thus, pπi ˝ ϕ`1
´1
q are simply projections restricted to a

certain domain for i “ 1, 2. pπ1 ˝ ϕ`1
´1
q is a composition of continuous functions, and I

leave for you the task of proving it. Therefore, we see that ϕ`1 is indeed a homeomor-
phism. ♥

This construction allowed us to chart S2 in parts. By diving the Earth in six pieces, we
can chart each piece continuously. Notice that the charts we chose superpose: for example,
p1, 1, 1q P U`i for i “ 1, 2, 3. This means we should expect some agreement between the
different charts: I must be able to change from a chart to another one continuously. In
cartographical terms, suppose you are following the trajectory of a ship in one of the
charts of an atlas. If the trajectory reaches the edge of the page, you must be able to keep
following it in another page without any contradictions. If the trajectory was depicted in
a certain way in a page, it must be descripted in an analogue way in another page.

Let us put it in mathematical terms: if you have two charts pU,ϕq and pV ,ψq such
that U X V ‰ ∅, you would like to be able to continuously transition from ϕpU X Vq to
ψpUX Vq. Is this possible?

Indeed it is. Let us write ϕpU X Vq “ A and ψpU X Vq “ B. Notice that we have
a function pϕ ˝ ψ´1q : B Ñ A which is a homeomorphism, since it is the composition of
two homeomorphisms. Thus. we can transit continuously between the pages of our atlas.
We have completely described the Earth in the pages of a book in a continuous manner,
despite being unable to produce a uniquemap describing the entire planet in a continuous
way.

This might solve the problem for the cartographers, but this is a text in Mathematical
Physics. The next question a mathematician would ask might be something similar to
“Ok, but what if the Earth was a torus?”. Can we make this more general? If so, how
general?

In order to address these questions, we should step back a bit and provide precise
definitions for the concepts we’ve developed so far.
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Definition 1 [Locally Euclidean Space]:
Let pM, τq be a topological space. We say it is a locally Euclidean space of dimension n if,

and only if, every pointp PM has an open neighborhoodUwhich has an homeomorphism
ϕ onto an open subset ofRn. The pair pU,ϕq is said to be a chart,U is said to be a coordinate
neighborhood and ϕ is said to be a coordinate system on U. If ϕppq “ 0, the chart pU,ϕq is
said to be centered at p. ♠

Theorem 2:
Let pM, τq be a topological space. pM, τq is a locally Euclidean space if, and only if, every point

p PM has an open neighborhood U which has an homeomorphism ϕ onto an open ball of Rn. �

Proof:
Suppose every point p P M has an open neighborhood U which has an homeo-

morphism ϕ onto an open ball of Rn. Since every open ball is an open set, it follows
immediately that pM, τq is locally Euclidean.

Suppose pM, τq is locally Euclidean. Let p P M. We know there is a pair pU,ϕq such
that U is an open neighborhood of p and ϕ : U Ñ ϕpUq is a homeomorphism. Since ϕ
is a homeomorphism, ϕpUq is an open set. In particular, it is an open neighborhood of
ϕppq. Therefore, there is some ε ą 0 such that ϕppq Ď Bεpϕppqq Ď ϕpUq. Furthermore,
since ϕ is a homeomorphism, ϕ´1pBεpϕppqqq is an open neighborhood of p. Also, the
restriction of ϕ to ϕ´1pBεpϕppqqq is a homeomorphism, proving that p PM has an open
neighborhood which has an homeomorphism onto an open ball of Rn. �

Definition 3 [Atlas]:
Let pM, τq be a locally Euclidean space of dimensionn. An atlas on pM, τq is a collection

A “ tpUλ,ϕλquλPΛ of charts on pM, τq such thatM “
Ť

λPΛUλ. ♠

Notice that, by definition, every locally Euclidean spaces admits at least one atlas.

Definition 4 [Topological Manifold]:
A topological manifold of dimensionn is aHausdorff, second-countable, locally Euclidean

space of dimension n. ♠

In order to prove the well-definition of the dimension of a topological manifold, we
shall employ (without proof) the Theorem of Topological Invariance of Dimension, which
is Corollary 1.6.3 of [12].

Theorem 5 [Topological Invariance of Dimension]:
Let n,m P N,n ą m. Let ∅ ‰ U Ď Rn. There is no continuous injective mapping from U

to Rm. In particular, Rn and Rm are not homeomorphic. �

The following result will also be useful:

Lemma 6:
Let n P N, p P Rn, ε ą 0. Bεppq is homeomorphic to Rn. �

Proof:
Firstly we notice thatBεppq is homeomorphic toB1p0q. This can be proven in a simple
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way by employing the fact that Rn is a locally convex space. More details can be found at
[1].

We now must simply prove that B1p0q and Rn are homeomorphic. Consider the
function ϕ : B1p0q Ñ Rn

ϕpxq “ tan
ˆ

π‖x‖
2

˙

x. (1.9)

It is a composition of continuous functions, since tan is continuous on the interval
r0, 1q, the norm is continuous on the topology induced by itself and product by a scalar is
continuous on Rn[1]. It is also a inversible function with continuous inverse. Hence, it is
a homeomorphism. �

Theorem 7:
The dimension of a topological manifold is well-defined. �

Proof:
Let pM, τq be a topological manifold of dimension n and assume, for the sake of

contradiction, that it is also a topological manifold of dimension m ‰ n. We assume
without any loss of generality that n ą m.

Let p P M. Due to Theorem 2, we know there is an open set U with p P U and a
homeomorphism ϕ : UÑ Bεpxq Ď Rn, for some ε ą 0 and some x P Rn. Similarly, there
is an open set V with p P V and a homeomorphismψ : V Ñ ψpVq Ď Bδpyq, for some δ ą 0
and some y P Rm. Due to Lemma 6, we know that V is homeomorphic to Rm (let’s call
this homeomorphism g) andU is homeomorphic to Rn (let’s call this homeomorphism f).

We may consider the open set U X V . We know that f : U X V Ñ fpU X Vq Ď Rn is a
homeomorphism and so is g : UXV Ñ gpUXVq Ď Rm. Hence, pg ˝ f´1q : fpUXVq Ñ Rm
is a continuous injective map. Theorem 5 tells us this is a contradiction. Hence, pM, τq
can’t have two different dimensions, proving the dimension ofM is well-defined. �

Notation:
We denote the dimension of a topological manifold pM, τq by dimM. ♦

TheHausdorff and second-countability properties are demanded in order to add some
structure to the manifold. It is always interesting to have uniqueness of limits (which is
provided by the Hausdorff condition), especially considering we will eventually develop
a generalization of Calculus on structures similar to (but more complicated than) these.
Second-countability also will allow us to obtain more results (at the cost of generality), but
in particular it will prove its importance later on, when we start dealing with partitions of
unity.

The last requirement could be considered the soul of our interest: develop a theory
of structures which locally resemble Rn, which we are already familiar with. The notions
we shall develop are closely tied to the ideas of using charts and atlases to map the Earth:
you don’t need to know the actual Earth if your atlas is good enough. Being able to read
the information in the charts will be enough to obtain information about the real world.
We may illustrate this in the following proposition.
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Definition 8 [Continuous Curve]:
Let pM, τq be a topological manifold. A curve on M is a function γ : I Ñ M, where

I Ď R. A curve is said to be continuous if it is continuous as a function between topological
spaces, where R is considered to be equipped with the standard topology. Continuity of
γ at a point λ P R is defined in a similar manner. ♠

Proposition 9:
Let pM, τq be a topological manifold of dimension n. Consider a curve γ : RÑM. Let λ P R

and consider a chart pU,ϕq ofM such that γpλq P U. γ is continuous at λ if, and only if, ϕ ˝ γ is
continuous at λ. �

Proof:
Suppose γ is continuous at λ. Since ϕ is a homeomorphism, ϕ ˝ γ is a composition

of continuous functions at x and hence it is continuous. On the other hand, if ϕ ˝ γ is
continuous at x, notice that γ “ ϕ´1˝pϕ˝γq, and hence γ is the composition of continuous
functions. �

We may illustrate this notion in the following commutative diagram∗.

UR

ϕpUq Ď Rn

γ

ϕϕ˝γ

One should notice the fact that even though we may find whether γ is continuous by
looking at ϕ ˝ γ, the fact that γ is continuous at a point λ does not depend on the chart we
choose. Suppose, for example, that pU,ϕq and pV ,ψq are charts with γpλq P UX V . Then
ϕ ˝ γ is continuous at λ if, and only if, ψ ˝ γ is continuous at λ. A way of noticing it is by
looking at the map ψ ˝ϕ´1 (which is a composition of continuous maps, and therefore is
continuous as well):

ψ ˝ γ “ ψ ˝ pϕ´1 ˝ϕq ˝ γ,
“ pψ ˝ϕ´1q ˝ pϕ ˝ γq. (1.10)

Since ψ ˝ϕ´1 is continuous, continuity of ϕ ˝ γ implies continuity of ψ ˝ γ.
This remark might seem pointless, since we have already proven that continuity of

ϕ˝γ at x for any chart pU,ϕq containing γpxq is equivalent to continuity of γ itself at x, but
this notion will be useful when we try to generalize these concepts, which is the reason
we shall put these remarks in a more formal setting.

Definition 10 [Chart Transition Maps]:
Let pM, τq be a topological manifold of dimensionn and let pU,ϕq and pV ,ψq be charts

onM such thatUXV ‰ ∅. The chart transition maps, or simply transition maps or transition

∗The word “commutative” means following a path in the diagram yields the same result as following any
other path with the same endpoints. These concepts turn out to be quite useful in areas such as Category
Theory[6, 9]
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functions, between pU,ϕq and pV ,ψq are the maps

ϕ ˝ψ´1 : ψpUX Vq Ñ ϕpUX Vq, ψ ˝ϕ´1 : ϕpUX Vq Ñ ψpUX Vq. (1.11)
♠

Lemma 11:
Let pM, τq be a topological manifold of dimension n and let pU,ϕq and pV ,ψq be charts onM

such that UX V ‰ ∅. The chart transition maps between pU,ϕq and pV ,ψq are continuous. �

Proof:
Both ϕ and ψ are homeomorphisms, and hence both them and their inverses are con-

tinuous. Thus, the composition of any combination of ψ,ψ´1,ϕ and ϕ´1 is a continuous
function. �

This provides us with a theory of spaces which resemble Rn in terms of continuity
of functions. If we want to check what was the real trajectory of a ship on the topological
manifold, we can simply see the trajectory across the charts (and use the continuous chart
transition maps to “flip pages” on the atlas) and evaluate continuity by looking at this
projection.

However, what ifwe not onlywanted to know the ship’s trajectory, but also its velocity?
As we know from elementary Physics, this requires a theory of differentiation, which we
do not possess for such general spaces, since Topology can only deal with continuity.

Nevertheless, we have already seen a possibleway of definingdifferentiability of curves
in this context. Proposition 9 states that we can speak of continuity without needing to
pay attention to the manifold’s topology, so imposing a similar result could provide a
satisfactory notion of differentiability.

However, aproblemarises. Wemust guarantee that ourdefinition is chart-independent,
since it should reflect a property of the curve itself, and not a property of the curve’s pro-
jection through a specific chart. This can be visualized in the following diagram:

UX V

R

ψpUX Vq Ď RnRn Ě ϕpUX Vq

γ

ψ

ϕ

ψ˝γϕ˝γ

ψ˝ϕ´1

If wewant to give a proper definition of differentiability at p P UXV to γ by analysing,
say, whether ψ ˝ γ is differentiable, then the same result should be obtained by analysing
ϕ ˝ γ.

Therefore, we must have that, given charts pU,ϕq and pV ,ψq with p P U X V , then
ψ ˝ γ is differentiable at p if, and only if, ϕ ˝ γ is differentiable at p.

The diagram tells us how to achieve this: ψ ˝ γ “ pψ ˝ ϕ´1q ˝ pϕ ˝ γq. If ϕ ˝ γ is
differentiable and ψ ˝ ϕ´1 is differentiable, then ψ ˝ γ will also be differentiable. This
motivates the definition of compatible charts.
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Definition 12 [Ck-compatible Charts]:
Let pM, τq be a locally Euclidean space. Let pU,ϕq and pV ,ψq be charts on pM, τq. The

charts are said to be Ck-compatible if, and only if, either of the following requirements hold:

i. UX V “ ∅;

ii. ϕ ˝ψ´1 and ψ ˝ϕ´1 are of class Ck. ♠

Definition 13 [Ck-atlas]:
Let pM, τq be a locally Euclidean space and let A be an atlas on pM, τq. A is said to be

a Ck-atlas if, and only if, the charts on A are pairwise Ck-compatible.
In particular, C∞-atlases are commonly referred to as smooth atlases. ♠

Curiously, in order to define differentiability, we are not asking for more structure.
We are asking for less.

The problem we had with our original topological manifold was that some transition
mapswere notC1-compatible, and thus itwas not possible to definedifferentiability (which
we shall do soon) in a chart independent manner. We simply had too many pages on our
atlas and some of them were kind of weird when we speak about differentiability. Our
solution was to tear off these bad pages and keep a smaller, but more powerfull, atlas.

On the other hand, after we tear off the pages of our atlas, we’ll be careful to keep
all the useful pages. In other words, we will ask for our manifolds to be equipped with a
maximal atlas.

Definition 14 [Maximal Ck-atlas]:
Let pM, τq be a topological manifold and let A be a Ck-atlas on pM, τq. A is said to be

maximal if, and only if, for every Ck-atlas A 1 with A Ď A it holds that A “ A 1.
AmaximalCk-atlas on a topologicalmanifold pM, τq is also referred to as aCk-structure

on pM, τq. Once again, thek “∞ case is referred commonly as “smooth” insteadofC∞. ♠

Definition 15 [Ck-manifold]:
Let pM, τq be a locally Euclidean space and let A be a Ck-atlas on pM, τq. The triple

pM, τ,Aq is said to be a Crks-manifold.
In particular, C∞-manifolds are commonly referred to as smooth manifolds or differen-

tiable manifolds. ♠

Remark:
Notice that a Ck-manifold is a Cl-manifold for every l ď k. ♣

Requiring a maximal atlas might seem silly, but it is well justified: it comes for free if
you already have any other atlas.

Lemma 16:
Let pM, τq be a locally Euclidean space and let A be a Ck-atlas on pM, τq. Let pU,ϕq and

pV ,ψq be charts on pM, τq. If both pU,ϕq and pV ,ψq are compatible with the atlas A, then they
are compatible with each other. �

Proof:
If UX V “ ∅, the proof is complete. Let us then assume UX V ‰ ∅.
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A coversM, and therefore, given p P U X V , there is some chart pW,χq with p P W.
By hypothesis, pW,χq is compatible with both pU,ϕq and pV ,ψq. We may represent this in
the diagram

UX V XW

χpUX V XWq

ψpUX V XWqϕpUX V XWq

χ

ψ

ϕ

χ˝ψ´1ϕ˝χ´1

ϕ˝ϕ´1

Since pW,χq is compatible with both pU,ϕq and pV ,ψq, we know that χ ˝ψ´1 is Ck at
ψpUX V XWq and ϕ ˝ χ´1 is Ck at χpUX V XWq. Hence, ϕ ˝ψ´1 is Ck at ψpUX V XWq
and, in particular, at ψppq. Since p P U X V was arbitrary, we see that ϕ ˝ ψ´1 is Ck at
ψpU X Vq. A similar argument proves that ψ ˝ ϕ´1 is Ck at ϕpU X Vq. Therefore, pU,ϕq
and pV ,ψq are Ck-compatible. �

Proposition 17:
Let pM, τq be a locally Euclidean space and let A be a Ck-atlas on pM, τq. A is contained on a

unique maximal Ck-atlas. �

Proof:
Consider the set Ā of all charts Ck-compatible with A. Notice that A Ď Ā and, as a

consequence, Ā is an atlas, for it is a collection of charts that covers M. We must now
prove that it is a Ck-atlas and that it is maximal.

Let pU,ϕq, pV ,ψq P Ā. By hypothesis, both of them are Ck-compatible with A and,
due to Lemma 16, are compatible with each other. Therefore, Ā is a Ck-atlas.

Suppose now A 1 is a Ck-atlas containing Ā. Notice A Ď Ā Ď A 1. Thus, every chart
pU,ϕq in A 1 is Ck-compatible with A. Thus, by definition of Ā, every chart pU,ϕq of A 1 is
in Ā, id est, A 1 Ď Ā. Therefore, Ā “ A 1, proving Ā is maximal.

Finally, we must prove Ā is unique. Suppose A 1 is some Ck-atlas with A Ď A 1. Then
every chart in A 1 is compatible with A and hence A 1 Ď Ā, so either A 1 “ Ā or A 1 is not
maximal. One way or the other, the proof is complete. �

Proposition 17 guarantees that, whenproving some topological space is aCk-manifold,
we do not need to bother with describing the whole maximal atlas. Instead, it suffices to
find some atlas and the existence of a maximal atlas is guaranteed.

A result due to Hassler Whitney states that, for every k ą 0, a maximal Ck-atlas
contains a smooth atlas[6]. As a consequence, we will be mostly interested on the theory
of smooth manifolds.

The restriction k ‰ 0 is important: there are examples of topological manifolds that do
not admit a smooth structure. The first example[7] of such a manifold is a 10-dimensional
manifold constructed by Michel Kervaire in 1960[5].

Let us check a few examples of manifolds.
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Example [Euclidean Space]:
The first example of smooth manifold one might consider is Rn itself, which is a

Hausdorff, second-countable space. An atlas is given by tpRn, idqu, where id : Rn Ñ Rn
is the function that maps x ÞÑ x. ♥

Example [Locally Euclidean space which is not Hausdorff]:
A simple example of a locally euclidean space which is not Hausdorff is the line with

two origins: the real line with an extra point.
We begin by picking some set which we already know to exist. As any set will do, let

y denote a leaf. We write X “ RY tyu.
We now proceed to define a topology in X. Let BR be the basis of open intervals for

the standard topology in R. LetBy ” ttyu Y Bz t0u ;B P BRu. We defineB ” BRYBy.
B is a basis for a non-Hausdorff topology in X. On the other hand, every point p has
an open neighbourhood which can be mapped with the identity (or with a quasi-identity
x ÞÑ x for x ‰y andy ÞÑ 0) to R. Thus, it is locally Euclidean. ♥

Example [2-sphere]:
The construction made on the beginning of this chapter can be used to prove that S2

is a smooth manifold. ♥

Definition 18 [Surface in R3]:
Let S Ď R3. S is said to be a surface if, and only if, for every p P S there is an open

neighborhood Vp of p in R3, an open subset Up of R2, and a smooth map fp : Up Ñ R3

such that SX Vp is the graph of z “ fppx,yq, x “ fppy, zq or y “ fppz, xq. ♠

Proposition 19:
Let S Ď R3 be a surface. For every p P S, let Vp be an open neighborhood of p in R3, Up

be an open subset of R2, and fp : Up Ñ R3 be a smooth map such that S X Vp is the graph of
z “ fppx,yq, x “ fppy, zq or y “ fppz, xq. pS, τ,Aq is a smooth manifold, where τ is the relative
topology of S with respect to R3 and A is the maximal smooth atlas associated to the smooth atlas

A “ tpSX Vp,ϕpq;p PMu , (1.12)

where themapsϕp are defined such that px,y, zq ÞÑ px,yqwhen SXVp is the graph of z “ fppx,yq,
with similar definitions for the other cases. �

Proof:
Since R3 is Hausdorff and second-countable, so is pS, τq.
Pick p P S. We know there is an open neighborhood Vp of p in R3, an open subset

Up of R2, and a smooth map fp : Up Ñ R3 such that S X Vp is the graph of z “ fppx,yq,
x “ fppy, zq or y “ fppz, xq. Notice that SX Vp is an open neighborhood of p in pS, τq.

Let us assume, without any loss of generality, that fp : Up Ñ R3 is such that SX Vp is
the graph of z “ fppx,yq. Then SX Vp “

 

px,y, fppx,yqq P R3; px,yq P Up
(

.
Let ϕp : S X Vp Ñ ϕppS X Vpq be given by ϕp ppx,y, zqq “ px,yq. One may show

this function is bĳective and continuous (it is a projection). The inverse is ϕ´1p ppx,yqq “
px,y, fppx,yqq. Since fp is a smoothmap, this is just a composition of continuous functions.
Hence, ϕp is a homeomorphism and we have proven pS, τq is a topological manifold. The
homeomorphisms are onto open sets of R2, and thus dimS “ 2.
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WemustnowproveA is a smoothatlas. It surely is anatlas, for@p PM, D pSX Vp,ϕpq P
A with p P SX Vp.

Letp,q PM such that SXVpXVq ‰ ∅ (if the intersection vanishes, the result is trivial).
We assume, without any loss of generality, that SXVp “

 

px,y, fppx,yqq P R3; px,yq P Up
(

and SXVq “
 

px, fqpz, xq, zq P R3; pz, xq P Uq
(

. We want to prove that ϕp ˝ϕ´1q is smooth
(the proof already applies to the other transition function by simply exchanging p and q).

Notice that ϕ´1q ppz, xqq “ px, fqpz, xq, zq and ϕp ppx,y, zqq “ px,yq. Hence,

pϕp ˝ϕ
´1
q q ppz, xqq “ ϕp ppx, fqpz, xq, zqq ,

“ px, fqpz, xqq. (1.13)

Since fq is smooth, ϕp ˝ϕ´1q is a composition of smooth functions between Euclidean
spaces, and hence ϕp ˝ ϕ´1q is smooth. This proves A is smooth, and thus pS, τ,Aq is a
smooth manifold of dimension 2. This concludes the proof. �

Now that we have the structure to develop the theory of differentiability, we may turn
our attention back to our original goal of obtaining the velocity of a ship from the charts.
For now, wewon’t be able to compute the velocity. Onemust first knowwhether a function
is differentiable before trying to differentiate it.

Definition 20 [Ck Maps]:
Let pM, τM,AMq and pN, τN,ANq be Ck-manifolds with dimM “ m and dimN “ n

and let p PM. A map f : MÑ N is said to be of class Ck at p if, and only if, there are charts
pU,ϕq P AM and pV ,ψq P AN with p P U and fpUq Ď V such that ψ ˝ f ˝ϕ´1 is of class Ck
(in the sense of Real Analysis) at ϕ´1ppq.

The map f is said to be of class Ck if, and only if, it is of class Ck at p for every p PM.
A C∞ map is often called a smooth map or a differentiable map. The map ψ ˝ f ˝ ϕ´1 is said
to be a local representation of f. ♠

The definition of a Ck map can be visualized through the following diagram:

M Ě U V Ď N

Rm Ě ϕpUq ψpVq Ď Rn

f

ϕ ψ

ψ˝f˝ϕ´1

Proposition 21:
The notion of a Ck map between two Ck-manifolds is well-defined, id est, it does not depend

on the charts chosen. �

Proof:
Let pM, τM,AMq and pN, τN,ANq be Ck-manifolds with dimM “ m and dimN “ n

and let p P M. Let f : M Ñ N be a map and let there be are charts pU,ϕq P AM and
pV ,ψq P AN with p P U and fpUq Ď V such that ψ ˝ f ˝ ϕ´1 is of class Ck (in the sense
of Real Analysis) at ϕ´1ppq. We want to show that if there are charts pW, ζq P AM and
pX, ξq P AN with p P W and fpWq Ď X such that ξ ˝ f ˝ ζ´1 is of class Ck (in the sense of
Real Analysis) at ζ´1ppq.
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Notice that p P U XW and fpU XWq Ď V X X. We are thus invited to consider the
diagram

M Ě UXW V X X Ď N

Rm Ě ϕpUXWq ψpV X Xq Ď Rn

Rm Ě ζpUXWq ξpV X Xq Ď Rn

f

ϕ ψ

ψ˝f˝ϕ´1

ζ ξ

ξ˝f˝ζ´1

The diagram then invites us to notice that

ξ ˝ f ˝ ζ´1 “ pξ ˝ψ´1q ˝ pψ ˝ f ˝ϕ´1q ˝ pϕ ˝ ζ´1q, (1.14)

which, due to the fact that AM and AN are Ck-atlases, is a composition of Ck-maps in the
sense of Real Analysis. Hence, ξ ˝ f ˝ ζ´1 is Ck in ζpU XWq and, in particular, in ζppq,
proving the result. �

Proposition 22:
Let pM, τM,AMq and pN, τN,ANq be Ck-manifolds and let p P M. Let f : M Ñ N be a

Ck-map at p PM. f is a Cl-map at p PM for every 0 ď l ď k. In particular, f is continuous at
p PM. �

Proof:
We know there be are charts pU,ϕq P AM and pV ,ψq P AN with p P U and fpUq Ď V

such that ψ ˝ f ˝ ϕ´1 is of class Ck (in the sense of Real Analysis) at ϕ´1ppq. We know
ψ ˝ f ˝ϕ´1 is of class Cl (in the sense of Real Analysis) at ϕ´1ppq, for every 0 ď l ď k.

In particular, we see thatψ˝f˝ϕ´1 is continuous. Sinceψ andϕ are homeomorphisms,
it follows that

f “ ψ´1 ˝ pψ ˝ f ˝ϕ´1q ˝ϕ (1.15)

is continuous at p. �

Proposition 23:
Let pL, τL,ALq, pM, τM,AMq, and pN, τN,ANq be Ck-manifolds and let p P L. Let f : LÑ

M and g : MÑ N be Ck-maps at p P L and at fppq PM, respectively. Then the map g˝f : LÑ N

is Ck at p P L. �

Proof:
We know there are charts pU,ϕq P AL and pV ,ψq P AM such that p P U, fpUq Ď V and

ψ ˝ f ˝ϕ´1 is of class Ck. Furthermore, there are charts pW, ζq P AM and pX, ξq P AN with
fppq P W,gpWq Ď X and such that ξ ˝ g ˝ ζ´1 is Ck. This can be represented through the
diagrams
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L Ě U V ĎM

Rl Ě ϕpUq ψpVq Ď Rm

f

ϕ ψ

ψ˝f˝ϕ´1

M ĚW X Ď N

Rm Ě ζpWq ξpXq Ď Rn

g

ζ ξ

ξ˝g˝ζ´1

Fortunately, f is continuous as per Proposition 22. Thus, f´1pV X Wq is an open
set. Since fpUq Ď V , we see that f´1pV XWq Ď U. Thus, we may consider the chart
pf´1pV XWq,ϕq and the following diagram:

L Ě f´1pV XWq V XW X Ď N

Rl Ě ϕpf´1pV XWqq ψpV XWq Ď Rn

Rn Ě ζpV XWq ξpXq Ď Rn

f

ϕ ψ

ψ˝f˝ϕ´1

g

ζ ξ

ξ˝g˝ζ´1

We see we may write

ξ ˝ pg ˝ fq ˝ϕ´1 “ pξ ˝ g ˝ ζ´1q ˝ pζ ˝ψ´1q ˝ pψ ˝ f ˝ϕ´1q, (1.16)

which is just a composition of Ckmaps in the sense of Real Analysis. Hence, we have found
charts pf´1pVXWq,ϕq P AL and pX, ξq P ANwith p P f´1pVXWq, pg˝fq

`

f´1pV XWq
˘

Ď X

and such that ξ ˝ pg ˝ fq ˝ϕ´1 is Ck at p P L. We may thus conclude g ˝ f is Ck at p. �

Notation:
We shall often be lazy and say “LetM be a manifold” instead of “Let pM, τ,Aq be a

manifold” for simplicity. Whenever this happens, the topology and atlas of the manifold
should be clear from context.

One should notice this is just depraved notation and the manifold is the triple, not
simply the set. ♦

Notation:
Given two Ck-manifoldsM, N, we denote by CkpM,Nq the space of all Ck functions

f : MÑ N.
We shall often write CkpMq ” CkpM,Rq. ♦

Remark:
From now on, we shall focus on the theory of differentiable (id est, smooth) manifolds

instead of Ck-manifolds. ♣

Definition 24 [Diffeomorphisms]:
LetM and N be smooth manifolds and let f : M Ñ N be a function. f is said to be a

diffeomorphism if, and only if, it is invertible and both f and f´1 are differentiable. Under
this condition,M and N are said to be diffeomorphic.
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f is said to be a local diffeomorphism at a point p P M if, and only if, there are open
neighbourhoods U Ď M and V Ď N with p P U and fppq P V such that f

∣∣
U

: U Ñ V is a
homeomorphism, where f

∣∣
U
ppq “ fppq,@p P U. ♠

Theorem 25:
LetM and N be smooth manifolds. The relationM » NôM and N are diffeomorphic is an

equivalence relation. �

Proof:
One can check that the identitymap id :MÑM thatmapsp ÞÑ p is a diffeomorphism,

for given a chart pU,ϕq, one has ϕ ˝ id ˝ϕ´1 “ idRn , which is smooth. Thus,M »M.
If f : MÑ N is a diffeomorphism (meaningM » N), f´1 is also a diffeomorphism and

we see that N »M.
Finally, suppose L »M andM » N with diffeomorphisms f : LÑM and g : MÑ N.

Proposition 23 guarantees g ˝ f : LÑ N is a diffeomorphism and thus L » N. �

Definition 26 [Support of a Function]:
Let pX, τq be a topological space. Let f : XÑ V , where V is a vector space. The support

of f, denoted supp f, is defined through

supp f “ tx P X; fpxq ‰ 0u, (1.17)

where 0 stands for the null vector. ♠

Lemma 27:
Let p P Rn and 0 ă δ ă r. There is a function β P C∞pRnq taking values in r0, 1s,

βpBδppqq “ t1u and with compact support in Brppq. �

Proof:
Let ε ą 0 be such that δ ă ε ă r. Consider the function

βpxq “

şε
‖x‖ gptqdt
şε
δ gptqdt

, (1.18)

where

gptq “

#

e´pt´δq
´1
ept´εq

´1 for δ ă t ă ε,
0 otherwise.

(1.19)

It can be shown (for example by handling it as an exercise to a Calculus student) that
gptq is smooth. Hence, so is βpxq.

Notice that for ‖x‖ ě ε (id est, x R Bεp0q), it holds that βpxq “ 0. Hence,

suppβ Ď Bεp0q Ă Brp0q. (1.20)

suppβ is compact by the Heine-Borel Theorem.
The generic case of a ball centered at any point follows through composition with a

translation. �

– 14 –



Definition 28 [Diameter of a Subset of a Metric Space]:
Let pM,dq be a metric space andA ĎM be a bounded set, id est, let there be r ą 0 and

p PM such that A Ď Brppq. We define the diameter of A, denoted diamA, through

diamA “ sup
x,yPA

dpx,yq. (1.21)

♠

Lemma 29:
Let K Ď Rn be a compact set and O Ď Rn be an open set such that K Ď O. Then there is a

function β P C∞pRnq taking values in r0, 1s, βpKq “ t1u and has compact support in O. �

Proof:
For each p P K, let Up be an open ball centered at p such that Up Ď O and Kp be the

closure of the open ball centered at pwith half the radius ofUp. The Heine-Borel Theorem
ensures every Kp is compact.

Notice that the collection
!

˝

Kp

)

pPK
is an open cover of K. Since K is compact, there is

a finite subcover
!

˝

Kpλ

)

λPΛ
of K. For each λ P Λ, Lemma 27 ensures, @ λ P Λ, the existence

of a function βλ P C∞pRnq that vanishes outside of Upλ , is constantly 1 throughout Kpλ
and has compact support in Upλ .

We may now define

βpxq “ 1´
ź

λPΛ

p1´ βλpxqq. (1.22)

This function is a composition of smooth functions (hence it is smooth), is constantly
1 throughout K (for K Ď

Ť

λPΛ Kpλ).
Notice that βpxq “ 0 ô βλpxq “ 0,@ λ P Λ. Thus, suppβ “

Ť

λ suppβλ. Since
suppβλ Ď Upλ ,@ λ P Λ, and

Ť

λPΛUpλ Ď O, it follows that suppβ Ď O.
SinceK is compact, it is closedandboundedby theHeine-Borel Theorem. LetdiamK “

d and ε be the supremumof the radii of the open ballsUpλ . Notice that suppβ Ď Bd`εp0q,
and hence suppβ is bounded. Since it is already closed by definition, the Heine-Borel
Theorem guarantees suppβ is compact. �

Theorem 30 [Existence of Cut-Off Functions]:
LetM be a smooth manifold. Let K Ď M be a compact set and O Ď M be an open set such

that K Ď O. Then there is a function β P C∞pMq taking values in r0, 1s, βpKq “ t1u and has
compact support in O. �

Proof:
Suppose firstly that there is a chart pU,ϕq such that K Ď U. In this case, ϕpUq is an

open set and ϕpKq is a compact set with ϕpKq Ď ϕpUq. Lemma 29 ensures the existence
of a function β˚ P C∞pRnq taking values in r0, 1s, with β˚pϕpKqq “ t1u and with compact
support in ϕpUq. Therefore, β “ β˚ ˝ϕ satisfies the requirements we have.

This notion can be illustrated in the following diagram.
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Figure 1: Vectors in manifolds are more delicate than on Euclidean space: one can’t add
vectors defined on different points of the manifold

M Ě U ϕpUq Ď Rn

R

ϕ

β˚

β˚˝ϕ

Suppose now K is not contained in the coordinate neighborhood of any chart. Since
every atlas covers the whole manifold, we know the coordinate neighborhoods of the
charts that compose themanifold’s atlas cover K. For every chart pUλ,ϕλqwe can attribute
compact sets Kλ with Kλ Ď Uλ.

Since K is compact, we know there is a finite collection of charts tpUi,ϕiquiPI such
that K Ď

Ť

iPI

˝

Ki Ď
Ť

iPIUi. We may, without any loss of generality, pick Ui Ď O,@ i P I,
since K Ď O and pUi XO, ϕi

∣∣
O
q is a chart just as good as pUi,ϕiq.

For each i P I we are left with the case in which K lies inside the coordinate neigh-
borhood of a chart, and this yields a collection of functions βi as per the beginning of the
proof. One might then notice that

βpxq “ 1´
ź

iPI

p1´ βipxqq (1.23)

satisfies the requires properties. �

2 Tangent Spaces and Fiber Bundles

With a definition of differentiability at hands, we may once more search for the velocity
of a ship navigating on Earth. However, once again I’ll delay the subject and present a
question: what do we mean by velocity?

As usual, we shall still think of velocity as the time derivative of space, which is a
function of the real parameter we call time. In a more abstract manner, we can think of
velocities as the derivatives of smooth curves defined on our manifold.

This seems simple enough, but there is an issue: while on Euclidean space one doesn’t
need to bother with the point in which the vector is defined. Figure 1 illustrates this with
the fact that summing velocities defined on different points will yield us something that
is not the velocity of any curve on the manifold (for it is not tangent to the manifold).
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In order to understand how to define vectors on manifolds, let us begin by working
with surfaces in Euclidean space (Proposition 19 guarantees these are manifolds if we are
in 3D space) and then proceed to remove the unnecessary structure.

For a given point p P Rn, we define the geometric tangent space to Rn at p, denoted
Rnp , as Rnp “ tpp, vq; v P Rnu. A geometric tangent vector to Rn at p is then simply an
element of Rnp . For simplicity, we write vp ” v

∣∣
p
” pp, vq P Rnp .

Notice thatRnp can bemade into a vector space by introducing the operations vp`up “
pv` uqp and λ ¨ vp “ pλ ¨ vqp.

Given a surface S Ď Rn, the tangent vectors to S at a point p P S should then be simply
a subset of Rnp . The issue we face is we can’t generalize this notion to arbitrary manifolds,
since it highly depends on the ambient space. The structures we do have on manifolds are
notions of functions, smoothness, coordinate charts, and so on. Thus, we should look for
how tangent vectors relate to these concepts in Euclidean space.

When dealing with the theory of real-valued functions defined on Rn, a concept that
arises and is connected to the idea of a tangent vector is the notion of directional derivative.
Indeed, given vp P Rnp , there is an operatorDvp : C∞pMq Ñ Rwhich associated a function
with its directional derivative in the direction of v at the point p. It is such that

Dvpf “

„

d
dtfpp` tvq



t“0
. (2.1)

As all good derivatives, these operators respect the Leibniz rule:

Dvppfgq “

„

d
dt
pfpp` tvqgpp` tvqq



t“0
,

“

„

gpp` tvq
d
dtfpp` tvq ` fpp` tvq

d
dtgpp` tvq



t“0
,

“ gppq

„

d
dtfpp` tvq



t“0
` fppq

„

d
dtgpp` tvq



t“0
,

“ gppqDvpf` fppqDvpg. (2.2)

In a similar fashion, linearity of d
dt over R implies Dvppf ` gq “ Dvpf ` Dvpg and

Dvppλ ¨ fq “ λ ¨Dvpf.
Suppose now we have a basis teiuni“1. We may write vp “ vi ei

∣∣
p
, with summation

over repeated indices implied. The chain rule implies

Dvpf “

„

d
dtfpp` tvq



t“0
,

“
d
dt
pp` tvqi

B

Bxi
fpx1, x2, x3q

∣∣∣∣
px1,x2,x3q“p

,

“ vi
B

Bxi
fppq. (2.3)

Motivated by these constructions, given a point p P Rn we may define a derivation at
p as a R-linear operator w : C∞pRnq Ñ R such that

wpfgq “ fppqwg` gppqwf. (2.4)
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This in principle seems to generalize Dvp . We let TpRn denote the collection of all
derivations at p. TpRn can be regarded as a linear space, for if v and w are derivations at
p and λ P R, then

pv`wqpfq “ vpfq `wpfq, pλ ¨ vqpfq “ λ ¨ vpfq (2.5)

can be shown to be R-linear. Furthermore,

pv`wqpfgq “ vpfgq `wpfgq,
“ fppqvg` gppqvf` fppqwg` gppqwf,
“ fppqpvg`wgq ` gppqpvf`wfq,
“ fppqpv`wqg` gppqpv`wqf, (2.6)

and thus v`w is a derivation. A similar proof holds for λ ¨ v.
There are some more interesting properties about derivations. For instance, notice

that if v is a derivation at p, then

vp1q “ vp1 ¨ 1q,
“ 1 ¨ vp1q ` 1 ¨ vp1q,
“ 2vp1q, (2.7)

which implies vp1q “ 0. Linearity guarantees vf “ 0 for all constant functions f.
Furthermore, suppose fppq “ gppq “ 0. Then of course

vpfgq “ fppqvg` gppqvf,
“ 0` 0,
“ 0. (2.8)

Nevertheless, he truly remarkable result is the fact that derivations and tangent vectors
are one and the same thing: the map vp ÞÑ Dvp is an isomorphism between Rnp and TpRn.

The fact that vp ÞÑ Dvp is linear can be seen from the decomposition of Dvp into a
basis. Given λ P R, vp,wp P Rnp we have

Dvp`λwpf “ Dpv`λwqpf,

“ pvi ` λwiq
B

Bxi
fppq,

“ vi
B

Bxi
fppq ` λwi

B

Bxi
fppq,

“ Dvpf` λDwpf, (2.9)

@ f P C∞pRnq.
In order to prove it is one-to-one, let us assumeDvp “ 0, id est,Dvpf “ 0,@ f P C∞pRnq.

The decomposition of Dvp in a basis shows this implies vip “ 0 for all components of vp,
and hence vp has to be the null vector. Thus, the kernel of vp ÞÑ Dvp is the trivial subspace
t0u and we conclude the transformation is injective.

Finally, let w P TpRn. We want to prove there is some vp P Rnp such that Dvp “ w.
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Let teiuni“1 be a basis forRn. Consider the functions xj : Rn Ñ R such that xjpeiq “ δji,
where δji stands for the Kronecker delta. Consider the tangent vector vp “ vi ei

∣∣
p
where

vi “ wpxiq.
Given f P C∞pRnq, Taylor’s Theorem∗ guaranteeswemaywrite (summation is implicit

over repeated indices)

fpxq “ fppq `
Bf

Bxi
pxi ´ piq ` pxi ´ piqpxj ´ pjq

ż 1

0
p1´ tq B2f

BxiBxj
dt . (2.10)

The last term is a product of functions that vanish at x “ p. Thus, the last term
vanishes under a derivation at p. Hence,

wf “ wpfppqq `w

ˆ

Bf

Bxi
pxi ´ piq

˙

,

“ 0` Bf

Bxi

`

wpxiq ´wppiq
˘

,

“
Bf

Bxi
vi,

“ vi
B

Bxi
fppq,

“ Dvpf. (2.11)

Now we are in position to define what is a vector in an arbitrary manifold.

Definition 31 [Tangent Space]:
LetM be a smooth manifold and let p P M. A derivation at p is an R-linear operator

v : C∞pMq Ñ R such that

vpfgq “ fppqvg` gppqvf. (2.12)

The set of all derivations at a point p PM is denoted TpM and referred to as the tangent
space toM at p. An element of TpM is often called a tangent vector toM at p. ♠

Lemma 32:
LetM be a smooth manifold, p PM. Let v P TpM. The following hold:

i. if f P C∞pMq is a constant function, vf “ 0;

ii. if f,g P C∞pMq are such that fppq “ gppq “ 0, then vpfgq “ 0. �

Proof:
We begin by showing the result for fpqq “ 1,@q PM.

vp1q “ vp1 ¨ 1q,
“ 1 ¨ vp1q ` 1 ¨ vp1q,
“ 2vp1q, (2.13)

∗See, exempli gratia, [8] or Appendix C of [7]
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which implies vp1q “ 0. Since v is R-linear, it follows that vf “ 0 for all constant functions
f.

Suppose now fppq “ gppq “ 0. It follows that

vpfgq “ fppqvg` gppqvf,
“ 0` 0,
“ 0. (2.14)

This concludes the proof. �

Proposition 33:
LetM be a smooth manifold and p P M. TpM is a real vector space when equipped with the

operations ` : TpMˆ TpMÑ TpM and ¨ : Rˆ TpMÑ TpM defined through

pv`wqpfq “ vf`wf, pλ ¨ vqpfq “ λ ¨ vf (2.15)

for all f P C∞pMq. �

Proof:
Let us begin by proving v`w P TpM,@ v,w P TpM. Linearity of v`w is easily proven

and we shall focus on showing v`w is a derivation. Indeed, notice that

pv`wqpfgq “ vpfgq `wpfgq,
“ fppqvg` gppqvf` fppqwg` gppqwf,
“ fppqpvg`wgq ` gppqpvf`wfq,
“ fppqpv`wqg` gppqpv`wqf. (2.16)

A similar argument applies to λ ¨ v.
The algebraic properties that characterize TpM as a vector space comes naturally from

the fact that vf is a real number for any v P TpM. �

Weshall prove that TpM is not onlyfinitedimensional, but alsohas the samedimension
asM (even though dim TpM should be understood in an algebraic sense and dimM in a
topological sense). In order todo so,wewill definea specific collectionofderivationswhich
shall be similar to partial derivatives. Afterwards, we shall prove that arbitrary derivations
are just linear combinations of this particular set, just as directional derivatives in Real
Analysis can be written in terms of the derivatives with respect to Cartesian coordinates.

Notation:
Given a function f : Rn Ñ R, Bif denotes the partial derivative of f with respect to its

i-th argument. For example,

B2fpx,y, zq “
Bf

By
(2.17)

and so on. ♦
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Definition 34 [Partial Derivatives]:
Let M be a smooth manifold, p P M and pU,ϕq be a chart such that p P U. Let

f P C∞pMq. We define a function Bf
Bϕi

: UÑ R through

Bf

Bϕi
:“ Bipf ˝ϕ

´1qpϕppqq. (2.18)
♠

Notice this definition could also be stated as

Bf

Bϕi
:“ lim
hÑ0

pf ˝ϕ´1qpϕ1ppq, . . . ,ϕippq ` h, . . . ,ϕnppqq ´ pf ˝ϕ´1qpϕppqq
h

. (2.19)

Definition 35 [Partial Derivatives at a Point]:
LetM be a smooth manifold, p PM and pU,ϕq be a chart such that p P U. We define

the operator
`

B

Bϕi

˘

p
: C∞pMq Ñ R through

ˆ

B

Bϕi

˙

p

f “
Bf

Bϕi
ppq (2.20)

for every f P C∞pMq. ♠

Lemma 36:
LetM be a smooth manifold, p P M and pU,ϕq be a chart such that p P U. Then

`

B

Bϕi

˘

p
P

TpM. �

Proof:
Linearity of derivatives ensures linearity of

`

B

Bϕi

˘

p
. We shall prove it is a derivation.

Let f,g P C∞pMq.
ˆ

B

Bϕi

˙

p

pfgq “
Bpf ¨ gq

Bϕi
,

“ Birpf ¨ gq ˝ϕ
´1spϕppqq,

“ Birpf ˝ϕ
´1q ¨ pg ˝ϕ´1qspϕppqq,

“ rpg ˝ϕ´1qpϕppqqsBipf ˝ϕ
´1qpϕppqq ` rpf ˝ϕ´1qpϕppqqsBipg ˝ϕ

´1qpϕppqq,

“ gppq
Bf

Bϕi
` fppq

Bg

Bϕi
,

“ gppq

ˆ

B

Bϕi

˙

p

f` fppq

ˆ

B

Bϕi

˙

p

g. (2.21)

This concludes the proof. �

Lemma 37:
LetM be a smooth manifold and p PM. Let v P TpM. The following results hold:

i. if f,g P C∞pMq are equal on a neighborhood of p, then vpfq “ vpgq;

ii. if h P C∞pMq is constant on a neighborhood of p, then vphq “ 0. �

Proof:
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i. Since v is linear, we want to prove that vpf ´ gq “ 0 if f “ g on some neighborhood
U of p. Hence, we want to prove that vpfq “ 0 whenever f vanishes on some
neighborhood U of p.

Consider a function β P C∞pMq such that βppq “ 1 and with βpqq “ 0,@q P Uc.
The existence of such a function is ensured by Theorem 30. Notice f ¨ β “ 0 (while
f vanishes on U, β vanishes outside of it). Linearity of v ensures vp0q “ 0. We thus
have

0 “ vpfβq,
“ fppqvβ` βppqvf,
“ 0 ¨ vβ` 1 ¨ vf,
“ vf. (2.22)

ii. Linearity guarantees it suffices to prove the result for h “ 1 on a neighborhood U of
p, for any constant function h can be written as h “ α ¨ 1 for α P R. Furthermore,
the first item implies we may assume hppq “ 1,@p P M. Any function constant
throughoutUwill be equal to αh onU and the previous item will enforce the result.

We have

vp1q “ vp1 ¨ 1q,
“ 1vp1q ` 1vp1q,
“ 2vp1q. (2.23)

Since vp1q “ 2vp1q, we conclude vp1q “ 0.
�

A remark should be made at this point: even though the tangent space seems to have
a local behaviour - for the derivations select the specific point under considerations and
derivatives lie on the tangent space -, its elements act on functions belonging to C∞pMq,
which is a global property. Wouldn’t it be expected that derivations may also act on
elements of C∞pUq for some open neighborhood U of p?

Consider the mapΦ : TpUÑ TpM such thatΦpvq : C∞pMq Ñ R is given byΦpvqpfq “
vpf

∣∣
U
q, where f

∣∣
U

: U Ñ R is the map given by f
∣∣
U
ppq “ fppq,@p P U. Since v is a

linear derivation, it holds that Φpvq is as well, and thus Φpvq P TpM. Φ is also a linear
transformation. Our goal is to prove Φ is an isomorphism (and therefore TpU and TpM
are identical in a linear way).

Suppose Φpvq “ 0. This means vpf
∣∣
U
q “ 0,@ f P C∞pMq. Let g P C∞pUq and let

β P C∞pMq be a function such that suppβ Ď U and βpKq “ t1u for a compact set K with
˝

K ‰ ∅. The existence of such a function is guaranteed by Theorem 30. The existence of
such K Ď U is ensured by the fact thatM is locally Euclidean. βg can be understood as
a function defined on all ofM that coincides with g on some neighborhood of p. Notice
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now that due to Lemma 37 we now see that

vpgq “ vprβgsUq,
“ Φpvqpβgq,
“ 0. (2.24)

Therefore, KerΦ is the trivial linear subspace, which provesΦ is one-to-one.
Let now v P TpM. We want to find w P TpU such that Φpwq “ v. Given β as above,

we may define wpfq “ vpβfq,@ f P C∞pUq. This yields
Φpwqf “ w

ˆ

f

∣∣∣∣
U

˙

,

“ v

ˆ

β f

∣∣∣∣
U

˙

,

“ vpβfq,
“ vpfq, (2.25)

where we used the fact that βf and f coincide in a neighborhood of p.
Therefore, given any chart pU,ϕq with p P U, it holds that TpU and TpM are isomor-

phic. In particular, given two charts pU,ϕq and pV ,ψqwith p P UXV it also holds that TpU
and TpV are isomorphic, since isomorphisms are an equivalence relation between linear
spaces.

In particular, we may study TpM by choosing a particular chart pU,ϕq such that
x,y P ϕpUq ñ tx` p1´ tqy P ϕpUq,@ t P r0, 1s. The existence of such charts in ensured by
the fact that Rn is a locally convex space. Given an arbitrary chart pV ,ψq, we know there
is a convex open set O Ď ψpVq. Since ψ is a homeomorphism, U “ ψ´1pOq is open and
we may define ϕ “ ψ

∣∣
U
. For more information, see [1].

Theorem 38:
LetM be a smooth manifold with dimM “ n and let pU,ϕq be a chart with p P U. It holds

that
˜

ˆ

B

Bϕ1

˙

p

, . . . ,
ˆ

B

Bϕn

˙

p

¸

(2.26)

is a basis for TpM. If ϕi : M Ñ R is the i-th coordinate function of ϕ, we may write, for any
v P TpM,

v “ vpϕiq

ˆ

B

Bϕn

˙

p

, (2.27)

where once again summation is implied over repeated indices. �

Proof:
The previous discussion allow us to pick, without any loss of generality, pU,ϕq to be

such thatϕpUq is convex. A translation allowus to chooseϕ such that the chart is centered.
A derivation always vanishes once applied to a constant, so the translation is meaningless
from its point of view.
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Let g P C∞pϕpUqq. The Taylor Formula with remainder in integral form allows us to
write, @ x P ϕpUq,

gpxq “ gp0q `
ż 1

0

Bg

Bxi
dt xi, (2.28)

where summation is implied over repeated indices. For simplicity, we define

gipxq “

ż 1

0

Bg

Bxi
dt . (2.29)

Notice that gip0q “
´

Bg
Bxi

¯

0
.

Let now f P C∞pMq. We may define g ” f ˝ϕ´1, according to the diagram below.

M Ě U ϕpUq Ď Rn

R

ϕ

g
f

The Taylor formula for g now yields

gpϕpqqq “ gpϕppqq ` gipϕpqqqϕ
ipqq,

fpqq “ fppq ` fipqqϕ
ipqq, (2.30)

for some functions fi. We may now apply the derivations
`

B

Bϕj

˘

p
to see

ˆ

B

Bϕj

˙

p

f “

ˆ

B

Bϕj

˙

p

fppq `

ˆ

B

Bϕj

˙

p

pfiϕ
iq,

“ 0` fippq
ˆ

B

Bϕj

˙

p

ϕi `ϕippq

ˆ

B

Bϕj

˙

p

fi,

“ fippq

ˆ

B

Bϕj

˙

p

ϕi,

“ fjppq, (2.31)

where we used the fact that
`

B

Bϕj

˘

p
ϕi “ δij. This can be seen from the definition provided

at Eq. (2.19).
Given v P TpM, we may apply it to an arbitrary function f P C∞pMq and see that

vf “ vfppq ` vpfiϕ
iq,

“ 0` vpϕiqfippq `ϕippqvpfiq,
“ vpϕiqfippq,

“ vpϕiq

ˆ

B

Bϕj

˙

p

f. (2.32)
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Hence,

v “ vpϕiq

ˆ

B

Bϕj

˙

p

, (2.33)

for all v P TpM. In particular, we see that v “ 0 has only null coefficients, which implies
´

`

B

Bϕ1

˘

p
, . . . ,

`

B
Bϕn

˘

p

¯

not only generates TpM, but is also linearly independent. This

proves
´

`

B

Bϕ1

˘

p
, . . . ,

`

B
Bϕn

˘

p

¯

is a basis for TpM. �

Corollary 39:
LetM be a smooth manifold and p PM. dim TpM “ dimM. �

Proof:
Direct consequence of Theorem 38. �

As interesting as the theory of tangent spaces can be, it only deals with vectors one
point at a time. Physics commonly needs to deal with vector fields, which requires a way
of viewing how a vector changes from a point to another in both space and time. Thus,
we would like to have a structure connecting different TpM’s in a consistent way. In order
to do so, we shall refer to the theory of bundles.

Definition 40 [Fiber Bundle]:
LetM, F,E be topological spaces and π : E ÑM be a surjective continuous map. The

quadruple pE,π,M, Fq is said to be a fiber bundle over M with model fiber F if, and only if,
@p PM there is a neighborhood U of p and a homeomorphism ϕ : π´1pUq Ñ Uˆ F such
that the following diagram commutes

π´1pUq Uˆ F

U

ϕ

π
π1

where π1 : Uˆ F Ñ U maps pu, fq ÞÑ u. ϕ is said to be a local trivialization of E under U. E
is called the total space of the bundle,M is its base space, F its typical fiber and π its projection.
For each p PM, Ep “ π´1ppq is called the fiber over p.

IfM, F, and E are smooth manifolds, π is smooth and the local trivializations can be
taken to be diffeomorphisms, we say pE,π,M, Fq is a smooth fiber bundle. If the fiber bundle
admits a trivialization over the entire base (known as a global trivialization)M, it is said to
be a trivial fiber bundle. If a smooth fiber bundle happens to admit a global trivialization
which is a diffeomorphism, it is said to be smoothly trivial. ♠

Example [Product Space is a Fiber Bundle]:
LetM and F be topological spaces and consider the product spaceMˆ F. If we define

π : Mˆ FÑM such that pm, fq ÞÑ m - id est, if π is the projection ofMˆ F ontoM - then
pMˆ F,π,M, Fq is a fiber bundle.

Indeed, π is continuous by the very definition of the product topology (the coarsest
topology which maintains the projections continuous). It is surjective, for given any

– 25 –



m P M, one might pick any f P F and have πppm, fqq “ m. Also, let p P M and let U be a
neighborhood of p. Notice that

π´1pUq “ tpm, fq PMˆ F;m P Uu ,
“ Uˆ F. (2.34)

Consider then the homeomorphism id : π´1pUq Ñ UˆF, where idpxq “ x,@ x P UˆF.
The diagram

π´1pUq Uˆ F

U

id

π
π

commutes, for π “ π ˝ id.
Notice that since id can be defined throughout all ofMˆ F, pMˆ F,π,M, Fq is a trivial

fiber bundle. ♥

This example might have given a hint on the idea behind fiber bundles: we want
to deal with spaces that might not be product spaces, but that resemble product spaces
locally.

Right now, we are particularly interested in a specific smooth fiber bundle: the tangent
bundle of a manifold.

Definition 41 [Tangent Bundle]:
LetM be a smooth manifold. We define the tangent bundle ofM, denoted TM, through

TM “ tpp, vq;p PM, v P TpMu . (2.35)
♠

Example [Tangent Bundle of S1]:
We’ve seen that S2 is a smooth manifold. A similar construction can be made to show

that the unit circle, S1, is a smooth manifold with dimS1 “ 1.
For each point p P S1, we can picture the tangent space to S1 at p, TpS1, as the tangent

line to the circle at that point, given that TpS1 is a one-dimensional linear space. This is
illustrated in Figure 2a

TS1 as a set can be thought of just as depicted on Figure 2a. However, that isn’t what
one usually means when speaking of the tangent bundle. We shall now see how it can be
equipped naturally with a topology and a smooth structure and be regarded as a smooth
manifold. By giving it such properties, we picture TS1 as in Figure 2b: a “smooth and
non-intersecting union” of tangent spaces. No point is simultaneously on two tangent
spaces and we will be able to move around the tangent bundle smoothly. ♥

Proposition 42:
Let M be a smooth manifold of dimension n. TM can be regarded as a smooth manifold of

dimension 2n such that the map π : TMÑM defined by πppp, vqq “ p is smooth. �
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(a) Depiction of the collection of tangent
spaces to S1 at various points

(b) Depiction of the tangent bundle as a
“smooth, non-intersecting union” of tangent
spaces

Figure 2: Depiction of how the tangent bundle arises from a “smoothed” union of tangent
spaces

Proof:
Our first step will be building what will become a smooth structure for TM. After-

wards we shall use it to obtain a topology.
Let pU,ϕq be a smooth chart onM. Notice that

π´1pUq “ tpp, vq P TM;p P Uu, (2.36)

id est, π´1pUq is the collection of vectors∗ which are tangent to some p P U.
�
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