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In this work, elementary S-matrix theory is briefly explained and the expression for the differential
cross-section of some process in terms of the S-matrix is obtained. With these in hand, the Feynman
rules are used in order to compute the invariant amplitude for the e+e− → µ+µ− process in QED in
the high-energy limit, which is then utilised in order to calculate the high-energy cross-section for the
e+e− → µ+µ− process.
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I. THEORETICAL PRELIMINARIES

A. The Scattering Matrix and the Invariant Amplitude

Suppose we are performing some given scattering experiment with initial state |kAkB〉 and final state |p1p2 · · ·〉.
These are, by assumption, asymptotic states, meaning they are eigenstates of the non-interacting Hamiltonian of
the system.

We want to calculate the probability that such an initial state will scatter in such a way that the final state
will be the outcome of the interaction. In order to understand how to do so, let us make an analogy with
Classical Mechanics (CM). In CM, these states would be uniform motion states, respecting an equation of the
form x(t) = x0 + vt. However, the interaction is described by an ODE system given by

ẍ =
1

m
F(x). (1)

Given an incoming free state |φ〉, there is a single interacting state |ψ〉 which coincides with |φ〉 at t → −∞ -
after all, the evolution of a state is deterministic, even in Quantum Mechanics (QM). In a similar manner, given
an outgoing free state, there is a single interacting state which coincides with it for t→ +∞.

In order to compute the overlap of the initial state |kAkB〉 and the final state |p1p2 · · ·〉, we might simply obtain
the interacting state associated to |kAkB〉 and then obtain the free outgoing state, |ξ〉, given by this interacting
state. The overlap of the original states we were considering is then simply 〈p1p2 · · ·|ξ〉.

There is a certain nuance in this idea. In terms of CM, we are assuming that even if the position behaves in a
complicated way for t in a certain time interval, it behaves as a free state for t → −∞ and t → +∞. This isn’t
always true. For example, we could in principle collide a proton and an electron and have, as an outgoing state, the
bound state of a hydrogen atom. Since we are not interested in the mathematical details nor in scattering theory,
we shall leave these and other issues aside, specially considering the scattering process we want to compute is,
indeed, simple enough.

In order to implement this notion mathematically into QM and Quantum Field Theory (QFT), we define the
S-matrix (S stands for scattering), through (in the interaction picture)

lim
T→+∞ 〈p1p2 · · ·|U(T,−T)|kAkB〉 = 〈p1p2 · · ·|S|kAkB〉 , (2)

where U(t, t0) is the operator such that |ψ(t)〉 = U(t, t0) |ψ(t0)〉.
In a free theory, we get that S = 1. This motivates us to define the T -matrix (T stands for transfer) through

S = 1 + iT .
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Every scattering process must still conserve 4-momentum, and as a consequence this must be reflected in the S
and T matrices, which should contain a term δ(4) (kA + kB −

∑
f pf). We might then factor this term out of the

T -matrix and define the invariant amplitude,M, by

〈p1p2 · · ·|iT |kAkB〉 = (2π)4δ(4)

(
kA + kB −

∑
f

pf

)
· iM(kA, kB → pf). (3)

We state, without proof, that the perturbative expansion of the invariant amplitude can be computed through1

iM = sum of all connected, amputated Feynman diagrams. (4)

The coupling constant of Quantum Electrodynamics (QED) is the fine-structure constant, α ≈ 1
137

. Due to the
fact that α � 1, the first order approximation in perturbation theory provides a good approximation, since the
second order is of order α2 ≈ 1

20000
.

For the e+e− → µ+µ− process in QED, the first order approximation in perturbation theory contains a single
diagram, which is

e−

e+

µ+

µ−

p1

p2
k

γ

q2

q1

µ ν . (5)

The value of each diagram can be computed via the Feynman Rules. For the vertices and legs appearing in
diagram (5), these rules are

Photon propagator:

k

µ ν =
−igµν

k2 + iε
; (6)

QED vertex:

µ = iQeγµ, (7)

where Q = −1 for electrons;

External fermions:

p

= us(p) (initial); (8)

p

= ūs(p) (final); (9)
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External antifermions:

p

= v̄s(p) (initial); (10)

p

= vs(p) (final). (11)

B. Cross Sections

Experimentally, the ways we can test QFT is through scattering experiments (hence the interest in defining
an scattering matrix), and if the theory is falsifiable we must be able to compute some quantity which can be
experimentally measured. One possible quantity is the cross section of a given process.

When colliding beams of particles, some particles will collide and bounce off each other while other particles
won’t. The cross section σ is the fraction of time they do bounce off each other. For a flux F, which represents the
number of incoming particles per unit time, the number of scattering events per unit timeN is, by definition of σ,
given by

N = σF. (12)

The angular distribution of scattering events is not uniform. For an example, in Rutherford scattering we know
there are more scattering events for low angles than there are for large angles. We might, thus, be interested in
calculating the scattering probability as a function of the angles θ and φ of one of the final particles. Thus, we
define the differential cross section dσ

dΩ as the differential probability per unit time per unit flux for a scattering
event to happen in the solid angle (θ,φ).

In general, in an scattering experiment, we are actually interested in the particles produced and their momenta.
This motivates us to consider the differential cross section in terms of momenta, dσ

d3p1···d3pn
. If we integrate this

quantity over some region of the momentum space, we recover the cross section for scattering into that region of
the momentum space. In this case, we define the differential cross section dσ

d3p1···d3pn
as the differential probability

per unit time per unit flux for a scattering event to happen in the region around p1,p2, . . . ,pn in the momentum
space.

Due to 4-momentum conservation, the components of final momenta are not independent, and four components
must always be constrained. If there are only two outgoing particles, we are then left with two unconstrained
components, which are usually taken to be the angles θ and φ of one of the particles, so that integration of

dσ
d3p1···d3pn

over the constrained momenta yields dσ
dΩ back.

Now we face the problem of obtaining the differential probability in terms of final momenta. We know that the
differential probability, dP, of an initial state |kAkB〉 scatter into the final state |p1p2 · · ·〉 must be given by

dP =
| 〈p1p2 · · ·|S|kAkB〉|2

〈p1p2 · · ·|p1p2 · · ·〉 〈kAkB|kAkB〉
dΠ , (13)

where

dΠ =
∏
j

V

(2π)3
d3pj . (14)

In the last equation V ≡ (2π)3δ(3) (0) stands for the spatial volume and

Ep ≡
√
‖p‖2 +m2. (15)

We shall do this computation for a scalar field, but the expression we are going to obtain for the differential
cross section holds for a spinor field as well.
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Given two one-particle states |p〉 and |k〉, their relativistic normalization is such that3:

〈p|k〉 = (2π)32Epδ
(3) (p − k) . (16)

Therefore,

〈k|k〉 = (2π)32Ekδ
(3) (0) ,

= 2EkV. (17)

In a similar manner, we get

〈kAkB|kAkB〉 = 4EkA
EkB

V2 (18)

and

〈p1p2 · · ·|p1p2 · · ·〉 =
∏
i

2Epi
V. (19)

Furthermore, if we assume |p1p2 · · ·〉 6= |kAkB〉,

| 〈p1p2 · · ·|S|kAkB〉|2 = | 〈p1p2 · · ·|1|kAkB〉+ 〈p1p2 · · ·|iT |kAkB〉|2,

=

∣∣∣∣∣(2π)4δ(4)
(
kA + kB −

∑
f

pf

)
· iM

∣∣∣∣∣
2

,

= (2π)8δ(4) (0) δ(4)

(
kA + kB −

∑
f

pf

)
· |M|

2
,

= (2π)4VTδ(4)

(
kA + kB −

∑
f

pf

)
· |M|

2
, (20)

where T is the total time available (VT amounts for the four-dimensional volume of space-time).
This yields

dP =
(2π)4VT |M|

2

4EkA
EkB

V2
∏

i 2Epi
V
δ(4)

(
kA + kB −

∑
f

pf

)∏
i

V

(2π)3
d3pi ,

=
(2π)4T |M|

2

4EkA
EkB

V
δ(4)

(
kA + kB −

∑
f

pf

)∏
i

V

(2π)3 · 2Epi
V

d3pi ,

=
T

V

(2π)4|M|
2

4EkA
EkB

δ(4)

(
kA + kB −

∑
f

pf

)∏
i

d3pi

(2π)3 · 2Epi

. (21)

The differential cross section is the differential probability per unit time (hence we shall divide the above
expression by T ) per unit flux. In the rest frame of one of the particles, say A, the flux is given by F = ‖vB‖

V
. In an

arbitrary frame of reference, F = ‖vA−vB‖
V

. If we divide dP by the time T and by the flux, we get the differential
cross section:

dσ =
1

T

V

‖vA − vB‖
T

V

(2π)4|M|
2

4EkA
EkB

δ(4)

(
kA + kB −

∑
f

pf

)∏
i

d3pi

(2π)3 · 2Epi

,

=
(2π)4|M|

2

4EkA
EkB

‖vA − vB‖
δ(4)

(
kA + kB −

∑
f

pf

)∏
i

d3pi

(2π)3 · 2Epi

. (22)

Now that the T and V terms have dropped out, we might take V → +∞ and T → +∞.



5

Since we are particularly interested in the e+e− → µ+µ− process, we might consider the special case in which
there are only two outgoing particles. Furthermore, since the muon mass is much larger than the electron’s, we
might assume the electron mass is zero (and the same goes for the positron). Let us consider this situation in the
center of mass reference frame.

In the center of mass, we get that EkA
= EkB

≡ 1
2
ECM and kA = −kB ≡ k. Since we are treating the electron as

a massless particle, notice that ECM = ‖k‖. Thus, we might write

dσ =
(2π)4|M|

2

4ECM
2

ECM
2

∥∥∥2 k
ECM

+ 2 k
ECM

∥∥∥δ(4) (2k− p1 − p2) d3p1 d3p2

(2π)6 · 2Ep1
2Ep2

,

=
|M|

2

4E2CM
(2π)δ(4) (2k− p1 − p2)

d3p1 d3p2

(2π)3 · 2Ep1
2Ep2

. (23)

If we want to obtain the actual cross section, or the differential cross section in terms of scattering angles, we
must integrate dσ over the momentum phase space. Let us first integrate over the three components of p2 and
impose energy-momentum conservation through the delta functions available. Since we are in the center of mass,
this shall only impose that p1 = −p2. Notice that since we are only considering the spatial integrals, this has
not imposed the energy conservation constraints on Ep1

and Ep2
yet: each particle does respect the relativistic

energy-momentum relation separately, but there is still no overall energy conservation on the scattering process.
Since they obey the relativistic energy-momentum relation and p1 = −p2, we know that Epi

=
√
‖p1‖2 +m2

i .
Since we are interested in the high-energy limit of the e+e− → µ+µ− process, we can take the muon and antimuon
masses to be equal to zero.

We get for now that ∫
dσ =

|M|
2

4E2CM

∫
(2π)δ

(
ECM − Ep1

− Ep2

) d3p1

(2π)3 · 2Ep1
2Ep2

,

=
|M|

2

4E2CM

∫
(2π)δ

(
ECM − Ep1

− Ep2

) ‖p1‖2 dp1 dΩ
(2π)3 · 2Ep1

2Ep2

,

=
|M|

2

4E2CM

∫
δ (ECM − 2‖p1‖)

‖p1‖2 dp1 dΩ
16π2 · ‖p1‖2

,

=
|M|

2

4E2CM

∫
dΩ
16π2

. (24)

Therefore, we get that, at the center of mass reference frame,

dσ
dΩ

∣∣∣∣
CM

=
|M|

2

64π2E2CM
. (25)

In order to make notation simpler, we shall adopt the Mandelstam variable s = (kA + kB)
2 = (p1 + p2)

2 and
write s ≡ E2CM from now on. In this notation, we get that

dσ
dΩ

∣∣∣∣
CM

=
|M|

2

64π2s
. (26)

II. COMPUTATION OF THE INVARIANT AMPLITUDE

Eq. (26) shows that everything we must do now is compute the invariant amplitude M and we are essentially
done. As stated in Subsection I A, QED allows us to do perturbation theory due to the smallness of its coupling
constant and therefore we might simply consider diagram (5) in the computation. The value of such a diagram
can be obtained through the Feynman rules.
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In fact, there is one more complication. Experimentally, the beams we collide are not polarized, which forces
us to average |M|

2 over incoming spins. Furthermore, the muon detectors can’t measure the muon and antimuon
polarizations, and therefore we must sum |M|

2 over outgoing spins. In this way, our computation can actually be
used in order to analyse experimentaldata. However, we shall not worry with this issue for now.

Applying the Feynman rules to diagram (5), we get

e−

e+

µ+

µ−

p1

p2
k

γ

q2

q1

µ ν = v̄(p2)(−ieγµ)u(p1)

(
−igµν

k2 + iε

)
ū(q1)(−ieγν)v(q2), (27)

i.e.,

iM = v̄(p2)(−ieγµ)u(p1)

(
−igµν

k2 + iε

)
ū(q1)(−ieγν)v(q2),

=
ie2

k2
v̄(p2)γµu(p1)g

µνū(q1)γνv(q2),

=
ie2

k2
v̄(p2)γµu(p1)ū(q1)γ

µv(q2). (28)

In spinorial notation, we get

M =
e2

k2
· [v̄(p2)]1a

[
γµ
]
ab

[u(p1)]b1 · [ū(q1)]1c [γ
µ]cd [v(q2)]d1 . (29)

The quantity we are interested in is |M|
2. In order to compute it, we will need to square two quantities that

behave as Jµ = ψ̄1γ
µψ2. Recalling that ψ̄ = ψ†γ0 and γ0γ0 = 1, notice that

Jµ† =
[
ψ̄1γ

µψ2

]†
,

=
[
ψ†

1γ
0γµψ2

]†
,

= ψ†
2γ

µ†γ0†ψ1,

= ψ†
2γ

0γµγ0γ0ψ1,

= ψ̄2γ
µψ1, (30)

where we used the fact that γµ† = γ0γµγ0, proved in Appendix A.
In terms of spinorial indices, we then get that

Jµ†Jν =
[
ψ̄2

]
1a

[γµ]ab [ψ1]b1 ·
[
ψ̄1

]
1c

[γν]cd [ψ2]d1 ,

= [ψ2]d1
[
ψ̄2

]
1a

[γµ]ab [ψ1]b1
[
ψ̄1

]
1c

[γν]cd ,

=
[
ψ2ψ̄2

]
da

[γµ]ab
[
ψ1ψ̄1

]
bc

[γν]cd ,

= Tr
[(
ψ2ψ̄2

)
(γµ)

(
ψ1ψ̄1

)
(γν)

]
. (31)

A. Dealing With Spin Through Trace Technology

As mentioned earlier, we have to bother with the issue that the beams we are colliding are not polarized. In
order to do so, we consider, instead of simply |M|

2 for a single spin configuration, the quantity

1

2

∑
s1

1

2

∑
s2

|M(s1, s2 → r1, r2)|
2
, (32)
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where s1 denotes the spin of the incoming electron, s2 the spin of the incoming positron, r1 the spin of the
outgoing muon and r2 the spin of the outgoing antimuon.

We also must consider the fact that the detectors can’t measure the muon spins, and thus what we measure
experimentally is the combined effect of all possible muon spin configurations. To solve this issue, we consider
the quantity

|M|
2 =

1

2

∑
s1

1

2

∑
s2

∑
r1

∑
r2

|M(s1, s2 → r1, r2)|
2
,

=
1

4

∑
spins

|M|
2
. (33)

Thus, we see that

|M|
2 =

e4

4k4

∑
spins

[v̄s2
(p2)γνus1

(p1)ūr1(q1)γ
νvr2(q2)]

†
v̄s2

(p2)γµus1
(p1)ūr1(q1)γ

µvr2(q2),

=
e4

4k4

∑
spins

[ūr1(q1)γ
νvr2(q2)]

† [v̄s2
(p2)γνus1

(p1)]
†
v̄s2

(p2)γµus1
(p1)ūr1(q1)γ

µvr2(q2),

=
e4

4k4

∑
spins

Tr
[
[us1

(p1)ūs1
(p1)]γν [vs2

(p2)v̄s2
(p2)]γµ

]
[ūr1(q1)γ

νvr2(q2)]
†
ūr1(q1)γ

µvr2(q2),

=
e4

4k4

∑
spins

Tr
[
[us1

(p1)ūs1
(p1)]γν [vs2

(p2)v̄s2
(p2)]γµ

]
Tr[[vr2(q2)v̄r2(q2)]γν [ur1(q1)ūr1(q1)]γ

µ]. (34)

This expression looks cumbersome, but it can be simplified. Since the trace of a sum is the sum of the traces,
we might use the following completeness relations∑

s

us(p)ūs(p) = /p+m,
∑
s

vs(p)v̄s(p) = /p−m. (35)

A proof for these relations is provided at Appendix A.
We now get

|M|
2 =

e4

4k4
Tr
[[
/p1 +me

]
γν
[
/p2 −me

]
γµ
]

Tr
[[
/q2 −mµ

]
γν
[
/q1 +mµ

]
γµ
]
. (36)

Since we are interested in the high-enery limit of the e+e− → µ+µ− process, we might simply takeme = mµ ≈ 0
and have

|M|
2 =

e4

4k4
Tr
[
/p1γν/p2γµ

]
Tr
[
/q2γ

ν
/q1γ

µ
]
. (37)

We now get

Tr
[
/p1γν/p2γµ

]
= Tr

[
p α
1 γαγνp

β
2 γβγµ

]
,

= p α
1 p β

2 Tr
[
γαγνγβγµ

]
. (38)

The trace of the product of four Dirac matrices is given by the formula

Tr
(
γαγµγβγν

)
= 4

(
gαµgβν + gανgµβ − gαβgµν

)
, (39)

which is proven at Appendix A. Using this equation, it follows that

Tr
[
/p1γν/p2γµ

]
= 4p α

1 p β
2

(
gαµgβν + gανgµβ − gαβgµν

)
,

= 4
(
p1µp2ν + p1νp2µ − p α

1 p2αgµν

)
. (40)
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Therefore,

Tr
[
/p1γν/p2γµ

]
Tr
[
/q2γ

ν
/q1γ

µ
]
= 16

(
p1µp2ν + p1νp2µ − gµν(p1 · p2)

) (
q µ
2 q

ν
1 + q ν

2 q
µ

1 − gµν(q2 · q1)
)
,

= 16
(
(p1 · q2)(p2 · q1) + (p1 · q1)(p2 · q2) − (p1 · p2)(q1 · q2)

+ (p1 · q1)(p2 · q2) + (p1 · q2)(p2 · q1) − (p1 · p2)(q1 · q2)
− (q2 · q1)(p1 · p2) − (q2 · q1)(p1 · p2) + 4(p1 · p2)(q2 · q1)

)
,

= 32 ((p1 · q1)(p2 · q2) + (p1 · q2)(p2 · q1)) . (41)

Plugging this result in the expression for |M|
2 we find that

|M|
2 =

8e4

k4
((p1 · q1)(p2 · q2) + (p1 · q2)(p2 · q1)) . (42)

This accounts for all the dynamics of the process. We have already dealt with all the trouble due to the
interaction itself and now we must turn our attention to the relativistic kinematics.

Let us choose the center of mass reference frame in order to do the kinematic calculations. An appropriate
choice of the z axis allows us to write p1 = (E, Eẑ), p2 = (E,−Eẑ). The muon and antimuon need not to be on the
z-axis after the collision, and thus in general there is an angle θ between ẑ and q̂1. An appropriate choice of the y
axis allows us to write q1 = (E, Eq̂), q2 = (E,−Eq̂) where q̂ = sin θŷ + cos θẑ.

We then have the following relations:

(p1 · p2) = (q1 · q2),
= (E,−Eq̂) · (E,−Eq̂),
= 2E2. (43)

s ≡ (p1 + p2)
2,

= k2,

= (q1 + q2)
2,

= q21 + 2(q1 · q2) + q22,
= 4E2. (44)

(p1 · q1) = (p2 · q2),
= (E,−Eẑ) · (E, Eq̂),
= E2 − E2ẑ · q̂,
= E2(1− cos θ). (45)

(p1 · q2) = (p2 · q1),
= (E, Eẑ) · (E, Eq̂),
= E2 + E2ẑ · q̂,
= E2(1+ cos θ). (46)

Notice that by Ewe mean the energy in the center of mass reference frame.
We now see that

|M|
2 =

e4

2E4

(
E4(1− cos θ)2 + E4(1+ cos θ)2

)
,

=
e4

2

(
1− 2 cos θ+ cos2 θ+ 1+ 2 cos θ+ cos2 θ

)
,

= e4
(
1+ cos2 θ

)
. (47)
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B. Dealing With Spin Through the Helicity Structure

In the previous subsection, we computed |M|
2 by employing the completeness relations and trace technology.

Alternatively, we might deal with each possible spin configuration and then proceed to average and sum over
spins.

In the Weyl representation,

us(p) =

(√
p · σξs√
p · σ̄ξs

)
, vs(p) =

( √
p · σξ−s

−
√
p · σ̄ξ−s

)
. (48)

If we associate ξs with the physical spin component along the z axis and have momentum along the z direction
(p = (E, pzẑ)) we get

u↑(p) =


√
E− pz

(
1

0

)
√
E+ pz

(
1

0

)
 , u↓(p) =


√
E+ pz

(
0

1

)
√
E− pz

(
0

1

)
 , (49)

v↑(p) =


√
E+ pz

(
0

1

)
−
√
E− pz

(
0

1

)
 , v↓(p) =

−
√
E− pz

(
1

0

)
√
E+ pz

(
1

0

)
 . (50)

In the high-energy limit, which is our interest, we have E = pz, yielding

u↑(p) =
√
2E


0

0

1

0

 , u↓(p) =
√
2E


0

1

0

0

 , v↑(p) =
√
2E


0

1

0

0

 , v↓(p) =
√
2E


0

0

1

0

 . (51)

If we define the chirality projectors through

L =
1

2
(1 − γ5) =

(
1 0

0 0

)
, R =

1

2
(1 + γ5) =

(
0 0

0 1

)
, (52)

where γ5 = iγ0γ1γ2γ3, then we get in the high-energy limit that

Ru↑ = u↑, Lu↓ = u↓, Lv↑ = v↑, Rv↓ = v↓,

ū↑L = ū↑, ū↓R = ū↓, v̄↑R = v̄↑, v̄↓L = v̄↓, (53)

for chirality and helicity coincide for massless particles.
Since each of the four particles involved might have two possible configurations (↑ or ↓), there are 16 possible

configurations. However, the current ψ̄2γ
µψ1 vanishes in the high-energy limit for two particles with the same

handedness. For example, we have

v̄↑γ
µu↑ = v̄↑Rγ

µRu↑,

= v̄↑RLγ
µu↑,

= 0, (54)

where we used the facts that γµR = Lγµ (which can be proved through brute-force computation) and RL = 0.
On the other hand, opposite handednesses yield

v̄↑γ
µu↓ = v̄↑Rγ

µLu↓,

= v̄↑R
2γµu↓,

= v̄↑R
2γµu↓,

6= 0. (55)
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This condition leaves us with two configurations for the electron-positron pair (↑↓ and ↓↑) and two more for
the muon-antimuon pair, for a total of four possibilities.

Let us consider firstly the case of a right-handed electron and a left-handed positron, with the electron moving
in the positive direction of the z axis and the positron moving in the negative direction of the same axis (center of
mass reference frame).

The general expressions for the Dirac spinors in the high-energy limit are

us(p) =

(√
p · σξs√
p · σ̄ξs

)
→

√
2E

2

(
(1− p̂ · σ)ξs
(1+ p̂ · σ)ξs

)
, (56)

vs(p) =

( √
p · σξ−s

−
√
p · σ̄ξ−s

)
→

√
2E

2

(
(1− p̂ · σ)ξ−s

−(1+ p̂ · σ)ξ−s

)
, (57)

which are due to the expressions

√
p · σ =

(p · σ+m)√
2(E+m)

,
√
p · σ̄ =

(p · σ̄+m)√
2(E+m)

. (58)

Right-handed spinors satisfy (p̂ · σ)ξ = +ξ, while left-handed spinors satisfy (p̂ · σ)ξ = −ξ. A particle’s
handedness coincides with the spinor’s handedness, but the antiparticle’s handedness is opposite to the spinor’s.
We shall then define

u+(−) = u↑(↓), v−(+) = v↓(↑). (59)

Notice that for both a right-handed and a left-handed positron it holds that (p̂ · σ)ξ = +ξ, with ξ =

(
1

0

)
. We

then have

u+(p1) =

√
2E

2

(
(1− p̂ · σ)ξ
(1+ p̂ · σ)ξ

)
=

√
2E

2

(
0ξ

2ξ

)
=

√
2E


0

0

1

0

 . (60)

As for the right-handed positron, we get

v+(p2) =

√
2E

2

(
(1− p̂ · σ)ξ
−(1+ p̂ · σ)ξ

)
=

√
2E

2

(
0ξ

−2ξ

)
=

√
2E


0

0

0

−1

 . (61)

The quantity we are interested in is

|M|
2 =

e4

k4
[v̄−(p2)γ

νu+(p1)ūr1(q1)γνvr2(q2)]
†
v̄−(p2)γ

µu+(p1)ūr1(q1)γµvr2(q2). (62)

We have

v̄−(p2)γ
µu+(p1) = 2E

(
0 0 0 −1

)0 1
1
0

( 0 σµ

σ̄µ 0

)
0

0

1

0

 ,

= 2E
(
0 0 0 −1

)(σ̄µ 0

0 σµ

)
0

0

1

0

 ,
= 2E

(
0 −1

)
σµ
(
1

0

)
. (63)
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If we substitute each component of σµ, we obtain the following four-vector

v̄−(p2)γ
µu+(p1) = −2E


0

1

i

0

 , (64)

which can be interpreted as circular polarization in the direction of the z-axis.
This solves half of the problem. We still must deal with the muon spins. We shall assume the outgoing muon

is right-handed, while the antimuon is left-handed. The muon is emitted at an angle θ with the z-axis, and thus
we might obtain the one-form ūr1(q1)γµvr2(q2) by simply considering the fact that[

ū+(q1)γµv−(q2)
]†

= v̄−(q2)γ
µu+(q1) (65)

and performing a rotation on the xz-plane of the result we obtained for v̄−(p2)γµu+(p1). We get

ū+(q1)γµv−(q2) = −2E



1

cos θ sin θ
1

− sin θ cos θ



0

1

i

0



†

,

= −2E




0

cos θ
i

− sin θ



†

,

= −2E
(
0 cos θ −i − sin θ

)
. (66)

We now get

|M|
2 =

e4

k4
[v̄−(p2)γνu+(p1)ū+(q1)γ

νv−(q2)]
†
v̄−(p2)γµu+(p1)ū+(q1)γ

µv−(q2),

=
e4

k4

4E2 (0 cos θ −i − sin θ
)
0

1

i

0



†

· 4E2
(
0 cos θ −i − sin θ

)
0

1

i

0

 ,
= e4 (cos θ+ 1)† · (cos θ+ 1) ,

= e4 (cos θ+ 1)2 . (67)

This is the result for right-handed electron and muon and left-handed positron and antimuon, which we shall
denote as |M+−→+−|

2. The other three possibilities are obtainable in a similar way, and are

|M+−→+−|
2 = |M−+→−+|

2 = e4 (1+ cos θ)2 , |M+−→−+|
2 = |M−+→+−|

2 = e4 (1− cos θ)2 . (68)

If we sum all possibilities and divide by 4 (in order to average over incoming spins), we obtain

|M|
2 = e2(1+ cos2 θ), (69)

which agrees with Eq. (47).

III. COMPUTATION OF THE TOTAL CROSS-SECTION

Let us now compute the cross-section for the e+e− → µ+µ− process. Eqs. (26) and (69) yield that, in the center
of mass reference frame,

dσ
dΩ =

e4

64π2s
(1+ cos2 θ). (70)
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Since α = e2

4π
,

dσ
dΩ =

α2

4s
(1+ cos2 θ). (71)

In order to compute the total cross-section, we must simply integrate over the solid angle. We get that

σ =
α2

4s

∫2π
0

∫π
0

(1+ cos2 θ) sin θdθdφ ,

=
πα2

2s

∫π
0

sin θ+ cos2 θ sin θdθ ,

=
πα2

2s

8

3
,

=
4πα2

3s
, (72)

which is the result we were seeking.
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Appendix A: Proofs of Useful Mathematical Formulae

1. Adjoint of Dirac Matrices

We want to show that γµ† = γ0γµγ0.
In the Dirac-Pauli representation, we have

γ0 =

(
1 0

0 −1

)
, γi =

(
0 σi

−σi 0

)
. (A1)

We can see directly that γ0† = γ0 = γ0γ0γ0 (for γ0γ0 = 1). For γi, notice that(
A B

C D

)†
=

(
A† C†

B† D†

)
. (A2)

Therefore, (
0 σi

−σi 0

)†
=

(
0 −σ†i
σ†i 0

)
,

=

(
0 −σi
σi 0

)
, (A3)

where we used the hermiticity of the Pauli matrices.
Notice now that (

0 −σi
σi 0

)
=

(
1 0

0 −1

)(
0 σi

−σi 0

)(
1 0

0 −1

)
,

γi† = γ0γiγ0, (A4)

proving that γµ† = γ0γµγ0, as desired.

http://www.damtp.cam.ac.uk/user/tong/qft/qft.pdf
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2. Completeness Relations

We want to show that ∑
s

us(p)ūs(p) = /p+m,
∑
s

vs(p)v̄s(p) = /p−m. (A5)

We know that, in the Weyl representation,

us(p) =

(√
p · σξs√
p · σ̄ξs

)
, vs(p) =

( √
p · σξ−s

−
√
p · σ̄ξ−s

)
, (A6)

where ξs are two-component linearly independent spinors supposed to be normalized, so that ξ†sξs = 1 for each
s, and usually taken to be orthogonal. We shall make this assumptions, so that

∑
s ξsξ

†
s = 1.

Furthermore, σµ = (σ0, σi) and σ̄µ = (σ0,−σi), where σ0) = 1 and σi are the Pauli matrices.
Notice now that ∑

s

us(p)ūs(p) =
∑
s

(√
p · σξs√
p · σ̄ξs

)(
ξ†s

√
p · σ ξ†s

√
p · σ̄

)(0 1
1 0

)
,

=
∑
s

(√
p · σξs√
p · σ̄ξs

)(
ξ†s

√
p · σ̄ ξ†s

√
p · σ

)
,

=
∑
s

(√
p · σξsξ†s

√
p · σ̄ √

p · σξsξ†s
√
p · σ√

p · σ̄ξsξ†s
√
p · σ̄

√
p · σ̄ξsξ†s

√
p · σ

)
,

=

(√
p · σ

√
p · σ̄ √

p · σ√p · σ√
p · σ̄

√
p · σ̄

√
p · σ̄√p · σ

)
,

=

(√
(p · σ)(p · σ̄) p · σ
p · σ̄

√
(p · σ̄)(p · σ)

)
. (A7)

Notice now that

(p · σ)(p · σ̄) =
(
p0 − p3 −p1 + ip2

−p1 − ip2 p0 + p3

)(
p0 + p3 +p1 − ip2

+p1 + ip2 p0 − p3

)
,

=

(
p20 − p

2
1 − p

2
2 − p

2
3 0

0 p20 − p
2
1 − p

2
2 − p

2
3

)
,

= p21,

= m21. (A8)

Furthermore, since γµ =

(
0 σµ

σ̄µ 0

)
in the Weyl representation, we see that

/p = γ · p,

=

(
0 σµpµ

σ̄µpµ 0

)
,

=

(
0 p · σ
p · σ̄ 0

)
. (A9)

Thus, we might conclude that ∑
s

us(p)ūs(p) =

(
m p · σ
p · σ̄ m

)
,

= /p+m. (A10)
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A similar calculation provides that

∑
s

vs(p)v̄s(p) =

(
−m p · σ
p · σ̄ −m

)
,

= /p−m. (A11)

3. Trace Technology

We want to show that Tr(γµγνγτγρ) = 4 (gµνgτρ + gµρgντ − gµτgνρ).
Firstly, let us prove that Tr(γµγν) = 4gµν. Recall that the Dirac matrices respect the Clifford algebra: {γµ, γν} =

2gµν and notice that

Tr(γµγν) = Tr(2gµν1 − γνγµ),

= Tr(2gµν1) − Tr(γνγµ),
= 8gµν − Tr(γµγν),

Tr(γµγν) = 4gµν, (A12)

where we used the fact that Tr(AB) = Tr(BA).

Tr(γµγνγτγρ) = Tr(2gµνγτγρ − γνγµγτγρ),

= Tr(2gµνγτγρ − 2γνgµτγρ + γνγτγµγρ),

= Tr(2gµνγτγρ − 2γνgµτγρ + 2γνγτgµρ − γνγτγργµ),

= 2gµν Tr(γτγρ) − 2gµτ Tr(γνγρ) + 2gµρ Tr(γνγτ) − Tr(γνγτγργµ),
= 8gµνgτρ − 8gµτgνρ + 8gµρgντ − Tr(γµγνγτγρ),

Tr(γµγνγτγρ) = 4 (gµνgτρ + gµρgντ − gµτgνρ) . (A13)
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