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The power of potential formulation of Electro and Magnetostatics is widely known by Physics
students. It allows us to calculate the scalar potential in order to find the Electric Field and then
use the mathematical similarities between Electro and Magnetostatics to find the vector potential
and, then, the Magnetic Field. In this paper, aimed at undergraduate students, we explore the
potential formulation of Electrodynamics, departing from static scalar and vector potentials and
walking towards the potential expressions for electrodynamical fields. Using the Lorenz gauge,
we find the retarded potentials and Jefimenko’s Equations, the latter being the solution to the
microscopic version of Maxwell’s Equations.
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I. OUTLINE

Undergraduates are, in general, familiar with the po-
tential formulation of Electro and Magnetostatics and
are used to the proceedings related to finding the physi-
cal fields E and B by differentiating the auxiliary fields
V and A, which are, in general, far easier to obtain
through integration. This formulation, including the
Helmholtz Theorem, is reviewed at Section II, while the
time-dependent formulation is covered at Section III.

Having the differential equations for V and A in
terms of the charge and current densities ρ and J, gauge
freedom is discussed at Section IV, in order to express
the differential equations in the Lorenz gauge, allowing
an intuitive introduction of retarded potentials at Sec-
tion V. In this section, it is also proved that the retarded
potentials are not only intuitive, but the true solutions
to the wave equations found at Section IV.

Section VI proposes a solution to Maxwell’s Equa-
tions through a reasoning similar to the one which has
led us before to the retarded potentials, highling the
difficulties inherent to the problem.

After some problems have been encountered at the
previous section, Section VII retraces the steps taken
in order to find the retarded potentials and makes the
appropriate adaptations to find the correct expressions
for the physical fields - namely, Jefimenko’s Equations.

Finally, the Appendix contains some proof sketches
for two vector calculus theorems which were necessary
at Section VII.

It is assumed that the reader is familiar with vec-
tor calculus, Maxwell’s Equations and the Continuity
Equation.
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II. INTRODUCTION

The main goal of Electrostatics and Magnetostatics
is to obtain the electromagnetic fields E and B (which,
for now, we are supposing to be time-independent) in
order to calculate the movement of electric charges un-
der their action through the mechanisms of Classical
Mechanics and Lorentz Force, which is given by

F = q (E+ v×B) . (1)

However, such a direct approach isn’t always some-
thing easy to calculate, and it gets even more cum-
bersome when we allow the fields to change as time
passes. Therefore, a more common approach is to use
Helmholtz Theorem in order to change the problem
slightly. This Theorem is stated[1] and proved[2] as
following:

Helmholtz Theorem. If the divergence (∇·F)(r) and
the curl (∇×F)(r) of a vector function F(r) are spec-
ified, and if they both go to zero faster than 1/r2 as
r → +∞, and if F(r) goes to zero as r → +∞, then F
is given uniquely by

F = −∇U +∇×W (2)

where U and W are given by

U(r) ≡ 1

4π

∫
(∇ · F)(r′)
‖r− r′‖

dτ ′ (3)

and

W(r) ≡ 1

4π

∫
(∇× F)(r′)

‖r− r′‖
dτ ′ . (4)

�

Proof. It is known from vector calculus that

−∇2Z = −∇(∇ · Z) +∇× (∇× Z). (5)
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Suppose that we may write F as

F = −∇2Z, (6)

for some vector function Z. Equation (6) is usu-
ally known as Poisson’s Equation. If F vanishes fast
enough1 as r → +∞, there is indeed such Z and it is
given by2[1, 2]

Z =
1

4π

∫
F(r′)

r dτ ′ . (7)

Indeed, if we apply the Laplacian on both sides of
equation (7), we see that, since the differentiation is
done with respect to the unprimed coordinates and the
integral with respect to the primed coordinates,

∇2Z =
1

4π

∫
∇2

(
F(r′)

r

)
dτ ′ ,

=
1

4π

∫
F(r′)∇2

(
1

r

)
dτ ′ ,

= − 1

4π

∫
F(r′) · 4πδ3 (rrr ) dτ ′ ,

= −F(r). (8)

In equation (8), δ3 is the three-dimensional Dirac
delta “function”3.

Now, equation (5) reads

F = −∇U +∇×W, (9)

for U and W given by

U =∇ · Z, W =∇× Z. (10)

Since all curls are divergenceless, we have that

∇ · F = −∇ · (∇U),

= −∇2U, (11)

which is once more Poisson’s Equation4. Thus, we have
that

U(r) =
1

4π

∫
(∇ · F) (r′)
r dτ ′ , (12)

1 This being a Physics paper, we are not too interested in the
formal procedures involved in this development. Further works
shall fill in these gaps with proper mathematical rigour.

2 The “rrr ” notation should be understood in the following way:
rrr ≡ r− r′, r ≡ ‖rrr ‖, r̂rr ≡ rrrr .

3 For more information on this “thing” (which is actually not
a function) or the divergence of r̂rrr 2 , take a look at [1]’s first
chapter.

4 Although equation (6) involves vectors and equation (11) in-
volves scalars, both are called Poisson’s Equation. After all,
the former is just three copies of the latter, one in each coordi-
nate.

which would be the solution for one of the coordinates
of equation (6).

Gradients being irrotational, a very similar reasoning
allows us to see that, due to equation (5),

∇× F =∇× (∇×W),

=∇(∇ ·W)−∇2W,

=∇(∇ · (∇× Z))−∇2W,

= −∇2W, (13)

which is again Poisson’s Equation.
Finally,

W(r) =
1

4π

∫
(∇× F) (r′)

r dτ ′ . (14)

This concludes the proof. �

In the above theorem, and through the rest of this pa-
per, dτ ′ represents the volume element associated with
the primed coordinates, which are themselves the coor-
dinates of source charges and currents (see Fig. 1). The
conventions used herein are the same ones used in [1].

Figure 1. The primed coordinates are the ones in which the
integrals are meant to be taken, i.e., the charges’ and cur-
rents’ (represented by the blob) coordinates. The unprimed
coordinates are where we evaluate the field’s values. The
vector rrr represents the distance between both.

When dealing with static electromagnetic problems,
it might be easier to deal directly with the special case
when either the divergence or the curl is zero. Then, we
may write Helmholtz Theorem in the following way:

Theorem 1. Let E be a curl-less field and let B be a
divergenceless field. Then we may write them as

E = −∇V, B =∇×A, (15)
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where V and A are given by

V (r) ≡ 1

4π

∫
(∇ ·E)(r′)

r dτ ′ (16)

and

A(r) ≡ 1

4π

∫
(∇×B)(r′)

r dτ ′ . (17)
�

Under this new statement, it will soon become clear
that we can get a lot of information on the electro-
magnetic fields through their potentials. This is due to
Maxwell’s Equations on the static case:


∇ ·E =

ρ

ε0
(Gauss’s Law),

∇ ·B = 0 (Magnetic Gauss’s Law),
∇×E = 0 (Faraday’s Law),
∇×B = µ0J (Ampère’s Law).

(18)

From equations (16), (17) and (18), we see that we
can write

V (r) =
1

4πε0

∫
ρ(r′)

r dτ ′ , A(r) =
µ0

4π

∫
J(r′)

r dτ ′ .

(19)
These are the so called (static) scalar and vector po-

tentials (as the names might suggest, the scalar poten-
tial is V and the vector potential is A). Having cal-
culated these potentials, one might obtain E and B
through equation (15). With the aid of vector calcu-
lus, it is seen that5

E = −∇V,

= − 1

4πε0

∫
∇
(
ρ(r′)

r

)
dτ ′ ,

= − 1

4πε0

∫
ρ(r′) ·∇

(
1

r

)
dτ ′ ,

=
1

4πε0

∫
ρ(r′) · r̂rrr 2 dτ ′ ,

E =
1

4πε0

∫
ρ(r′)

r 2 · r̂rr dτ
′ . (20)

Equation (20) is widely know as Coloumb’s Law, and
its application to a single point charge, together with

5 It is important to notice that while the integrals are meant to
be taken on the primed coordinates, the derivatives are done
with respect to the unprimed coordinates.

the Lorentz Force Law (equation (1)), will give rise to
the familiar inverse square force law.

A similar calculation with the magnetic equation in
equation (15) shows that

B =∇×A,

=
µ0

4π

∫
∇×

(
J(r′)

r

)
dτ ′ ,

=
µ0

4π

∫ [
1

r ·∇× J(r′)− J(r′)×∇
(
1

r

)]
dτ ′ ,

=
µ0

4π

∫ [
0+ J(r′)× r̂rrr 2

]
dτ ′ ,

B =
µ0

4π

∫
J(r′)× r̂rr
r 2 dτ ′ . (21)

Equation (21) is the magnetic equivalent to
Coulomb’s Law and it is known as Biot-Savart Law.
When we are talking about fields that vanish when
r → +∞, it is safe to say that these laws solve Maxwell’s
Equations for the electromagnetic fields. Therefore, our
objective when seeking a time-dependent solution is to
find a more general form of these very same laws.

However, before we keep going, there is a final remark
which should be done within this section. By taking
equation (15) and replacing it in Gauss’s Law, we can
see that

∇ · (∇V ) = − ρ

ε0
,

∇2V = − ρ

ε0
. (22)

Similarly, by replacing equation (15) in Ampère’s Law
we obtain

∇× (∇×A) = µ0J,

∇(∇ ·A)−∇2A = µ0J,

∇2A = −µ0J, (23)

where we used equation (5). Besides, we chose the di-
vergence of A to be zero. There is no problem in doing
that, since we are only interested in its curl, which re-
mained unchanged.

Equations (22) and (23) are, once again, Poisson’s
Equation. Their solutions are given by equation (19).
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III. TIME-DEPENDENT POTENTIALS

Now we are ready to explore Maxwell’s Equations in
their full glory, i.e.,

∇ ·E =
ρ

ε0
,

∇ ·B = 0,

∇×E = −∂B
∂t
,

∇×B = µ0J+ µ0ε0
∂E

∂t
.

(24)

From hereon, when we speak of the names previ-
ously mentioned at equation (18), we will be talking
about these versions of them. The only exception is the
equation for the curl of B, which we shall call Ampère-
Maxwell Law.

Since Faraday’s Law is no longer homogeneous, we
can’t, for now, use Theorem 1 to write E in terms of
potentials. However, the Magnetic Gauss’s Law has
remained unchanged, hence it is still true that

B =∇×A, (25)

though the expression we previously had for A doesn’t
need to be valid anymore. We might then write

∇×E = − ∂

∂t
(∇×A) ,

∇×E = −∇× ∂A

∂t
,

∇×E+∇× ∂A

∂t
= 0,

∇×
(
E+

∂A

∂t

)
= 0,

E+
∂A

∂t
= −∇V,

E = −∇V − ∂A

∂t
. (26)

We have obtained equations (25) and (26) through
the use of only the Magnetic Gauss’s Law and of Fara-
day’s Law, which means we still have some cards up our
sleeves. Using Gauss’s Law and equation (26) it follows
that

∇ ·E = −∇ · (∇V )−∇ ·
(
∂A

∂t

)
,

∇2V +
∂

∂t
(∇ ·A) = − ρ

ε0
. (27)

Likewise, adding the Ampère-Maxwell Law to our in-

formation we see that

∇× (∇×A) = µ0J− µ0ε0
∂

∂t

(
∇V +

∂A

∂t

)
,

∇× (∇×A) = µ0J− µ0ε0∇
(
∂V

∂t

)
− µ0ε0

∂2A

∂t2
,

∇(∇ ·A)−∇2A = µ0J− µ0ε0∇
(
∂V

∂t

)
− µ0ε0

∂2A

∂t2
,

µ0ε0
∂2A

∂t2
−∇2A+∇(∇ ·A) + µ0ε0∇

(
∂V

∂t

)
= µ0J,(

∇2A− µ0ε0
∂2A

∂t2

)
−∇

(
∇ ·A+ µ0ε0

∂V

∂t

)
= −µ0J.

(28)

It is very pleasing to see that equations (27) and (28)
return to equations (22) and (23) when we pick V and
A to be constant over time and ∇ ·A = 0. However,
the “updated” equations seem to be much harder to be
solved, which is definitely not pleasing. Can we write
them in a simpler way?

IV. GAUGE FREEDOM

In Classical Mechanics, we are allowed to choose the
reference system in which we are going to work out some
problem. This means we may apply, as an example,
spatial translations, time translations, rotations and/or
boosts to the system in which we are interested without
any loss of information, if the system is symmetric with
respect to that transformation. What if we could also
change “reference systems” in Electrodynamics?

In fact, we already perfomed such a thing in this pa-
per. In Section II, we chose the divergence of A to be
zero, since we were only interested in its curl. Currently,
we also need to be careful about the time-derivative of
A, so can we still choose its divergence?

In order to answer this question, let’s take a look on
the way these fields should transform. Let

A→ A′ = A+ a, V → V ′ = V + b. (29)

Since A′ and V ′ must describe the very same physical
fields as A and V , it follows from equation (25) that

∇×A =∇×A+∇× a,

∇× a = 0. (30)

Furthermore, we have, this time from equation (26),
that

−∇V − ∂A

∂t
= −∇V −∇b− ∂A

∂t
− ∂a

∂t
,

∇b = −∂a
∂t
. (31)
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However, since ∇× a = 0, we might just apply The-
orem 1 to obtain a = ∇χ, for some scalar function χ.
With this in our hands, equation (31) now reads

∇b+ ∂

∂t
(∇χ) = 0,

∇
(
b+

∂χ

∂t

)
= 0,∫

∇
(
b+

∂χ

∂t

)
· dl =

∫
0 · dl ,

b+
∂χ

∂t
= κ(t),

b = −∂χ
∂t

+ κ(t). (32)

In the previous calculation, it was used (perhaps in
an indirect way) the known fact from vector calculus
that ∫ b

a

∇F · dl = F(b)− F(a). (33)

Since the spatial gradient of any function κ(t) is cer-
tainly going to be 0, we might simply consider κ as
part of χ[3] and finaly write the general rule6 for the
potential transformations:


A→ A+∇χ,

V → V − ∂χ

∂t
.

(34)

The transformation shown in equation (34) is said
to be a gauge transformation[3], while χ - which may
depend on r and t - is said to be a gauge function[3].

Applying the divergence operator to the vector po-
tential’s tranformation in equation (34) shows that

∇ ·A→∇ ·A+∇2χ, (35)

which essentialy means we might choose the divergence
of A to be the one which pleases us the most[4].

The gauge we chose earlier when dealing with static
problems, in which ∇ · A = 0, is named Coulomb’s
gauge. In this gauge, equations (27) and (28) read

∇2V = − ρ

ε0
,(

∇2A− µ0ε0
∂2A

∂t2

)
− µ0ε0∇

(
∂V

∂t

)
= −µ0J.

(36)

6 Actually, the previous argument is not enough to state this is a
general transformation rule. As the Helmholtz Theorem might
suggest, only the curl of a is not enough to state it might be
written as the gradient of a function, as an example. However,
it is fairly easy to check that the transformation here shown is
indeed possible.

Though the equation for the scalar potencial has been
reduced to a simple Poisson’s Equation, the equation for
A is still pretty cumbersome and does not quite interest
us right now.

Equation (28) already resembles a wave equation, but
it would match it perfectly if it was possible for us to get
rid of the gradient’s argument. Therefore, it is exactly
what we are going to do: pick ∇ ·A = −µ0ε0

∂V
∂t . This

choice is called Lorenz gauge, in which equations (27)
and (28) read

∇2V − µ0ε0
∂2V

∂t2
= − ρ

ε0
,

∇2A− µ0ε0
∂2A

∂t2
= −µ0J.

(37)

Equation (37) shows us that these potentials respect
the three-dimensional wave equation and travel at a fi-
nite speed c = 1√

µ0ε0
. Moreover, we also know these

waves are generated by the charges ρ and currents J. It
is now possible to explore this new information in or-
der to update Coulomb’s and Biot-Savart Laws to time-
dependent cases.

V. RETARDED POTENTIALS

Since we know the fields travel at a finite speed, which
we called c, and are generated by the charges and cur-
rents, perhaps evaluating these quantities in the past
would give us the potentials in the present.

Think about it: since the potentials travel at a speed
c, it means that V (r, t) was actually caused by the
charge distribution at a time tr = t − rc . Therefore, it
seems to be reasonable to guess that the potentials can
be found by evaluating equations (19) without keeping
time fixed, but instead considering the past charge dis-
tributions7. In other words, we could attempt to solve
equation (37) by guessing that its solution should be
given by 

V (r, t) =
1

4πε0

∫
ρ
(
r′, t− rc

)
r dτ ′

A(r, t) =
µ0

4π

∫
J
(
r′, t− rc

)
r dτ ′

(38)

7 One should notice that it isn’t a single instant in time that
is being considered for all space, but actually a different in-
stant for each point. The idea is something similar to taking
a panoramic picture of a moving object: you get a distorted
photograph of the whole thing. This is due to the fact that,
since information is travelling at a finite speed, each point in
space needs a different time for its information to arrive at the
place in which you are evaluating the fields.
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Figure 2. We split the space in which we are integrating into
two disjoint sets: V1 and V2. This division is such that the
point in which we evaluate the fields, r, is always in V1. If
our integration limits didn’t include r, there is no problem:
we can always integrate over all space by setting ρ and J as
zero on the outside of our original integration volume.

Of course, it isn’t enough to simply say “this seems
like a reasonable solution, so let’s just stick with it”,
for physical intuition can trick us into false results (as
we shall see later in Section VI). Therefore, we must
check that equation (38) does satisfy equation (37). The
following proof is due to Riemann[5] and uses a clever
and indirect argument to re-obtain equation (37) from
equation (38). The same result can be found through
direct calculation by simply substituting equation (38)
in equation (37)[1].

The idea behind Riemann’s proof is to separate the
source term from the homogeneous wave equation and
them adding them up back again. This might be ac-
complished if we split the volume in which we are in-
tegrating (which we shall call V from hereon) into two
disjoint volumes, say V1 and V2 (see Fig. 2). In mathe-
matical notation, V = V1 t V28. Besides, since V is the
potential obtained when integrating over V, we define
the “partial potentials” V1 and V2 by

Vi(r, t) =
1

4πε0

∫
Vi

ρ (r′, tr)

r dτ ′ . (39)

Notice that we have then that

V (r, t) =
1

4πε0

∫
V1tV2

ρ (r′, tr)

r dτ ′ ,

=
1

4πε0

∫
V1

ρ (r′, tr)

r dτ ′

+
1

4πε0

∫
V2

ρ (r′, tr)

r dτ ′ ,

= V1(r, t) + V2(r, t). (40)

8 The t (called disjoint union) notation means, in this case, that
V1 ∩ V2 = ∅ and V1 ∪ V2 = V.

Finally, let’s impose that r ∈ V1, i.e., the point in
which we are evaluating V is always in V1.

Suppose now that we let V1 be very small, small
enough for the time correction to be negligible (don’t
worry, we will take a limit later on). Then it is true
that

r ∈ V1 ⇒ ρ (r, tr)→ ρ (r, t) ,

V1(r, t) =
1

4πε0

∫
V1

ρ (r′, t)

r dτ ′ . (41)

Equation (41) is simply equation (19)! Therefore, V1
satisfies Poisson’s Equation and now we have that

∇2V1 = − ρ

ε0
. (42)

V2 is a bit harder to work with. Firstly, notice that
taking the Laplacian in the unprimed coordinates is
the same thing as taking the Laplacian in the “dif-
ference” coordinates. After all, if we let (x̃, ỹ, z̃) =
(x− x′, y − y′, z − z′) = rrr , we have that, for each fixed
r′,

∂2

∂x2
=

∂

∂x

(
∂

∂x

)
,

=
∂x̃

∂x

∂

∂x̃

(
∂x̃

∂x

∂

∂x̃

)
,

=
∂

∂x̃

(
∂

∂x̃

)
,

=
∂2

∂x̃2
. (43)

With analogous calculations for y and z, we conclude
that

∇2 = ∇̃2. (44)

This result was actually expected, since - for each
fixed r′ - rrr is nothing but a translation of r.

We are going to need to calculate the Laplacian of V2
in spherical coordinates, which is given by

∇2ξ =
1

r2
∂

∂r

(
r2
∂ξ

∂r

)
+

1

r2 sin θ

∂ξ

∂θ
+

1

r2 sin2 θ

∂2ξ

∂φ2
,

(45)

where we let r denote the distance from the origin, θ
denotes the angle the position vector makes with the
z-axis and φ denotes the angle that the position vec-
tor’s projection onto the xy-plane makes with the x-
axis. Luckily, we are physicists, and symmetry works
on our behalf, which essentialy means we won’t need to
use equation (45) in all of its glory.
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For each fixed point r′, the distance to that point,
r = ‖r− r′‖, is spherically symmetric with respect to
r. Accordingly, since

ρ (r′, tr)

r
depends on r only through r , it also has to be spher-
ically symmetric. As an example, we know that the
potential of a point charge at rest (which clearly has
r′) is spherically symmetric, for it depends only on the
distance to the charge. Therefore, we might take the
Laplacian in the r coordinates ignoring the last two
terms of equation (45).

With the aid of equation (44), we can calculate the
Laplacian of V2 in order to find that

∇2V2 = ∇2

(
1

4πε0

∫
V2

ρ (r′, tr)

r dτ ′
)
,

=
1

4πε0

∫
V2
∇2

(
ρ (r′, tr)

r

)
dτ ′ ,

=
1

4πε0

∫
V2

1

r 2
∂

∂r

(
r 2 ∂
∂r

(
ρ (r′, tr)

r

))
dτ ′ ,

=
1

4πε0

∫
V2

1

r 2
∂

∂r

(
r ∂
∂r (ρ (r′, tr))

)
dτ ′

− 1

4πε0

∫
V2

1

r 2
∂

∂r (ρ (r′, tr)) dτ
′ ,

=
1

4πε0

∫
V2

1

r
∂2

∂r 2 (ρ (r′, tr)) dτ
′

+
1

4πε0

∫
V2

1

r 2
∂

∂r (ρ (r′, tr)) dτ
′

− 1

4πε0

∫
V2

1

r 2
∂

∂r (ρ (r′, tr)) dτ
′ ,

=
1

4πε0

∫
V2

1

r
∂2

∂r 2 (ρ (r′, tr)) dτ
′ . (46)

This expression doesn’t seem to be very nice yet.
However, we know that a function of the form u

(
t− x

v

)
satisfies the one-dimensional homogeneous wave equa-
tion:

∂2u

∂x2
− 1

v2
∂2u

∂t2
= 0. (47)

Luckily, ρ(t − rc ) is such a function! Therefore, it is
true that

∂2

∂r 2 (ρ (r′, tr)) =
1

c2
∂2

∂t2
(ρ (r′, tr)) . (48)

By substituting equation (48) into equation (46), it
follows that

∇2V2 =
1

4πε0

∫
V2

1

r ·
1

c2
∂2

∂t2
(ρ (r′, tr)) dτ

′ ,

=
1

c2
∂2

∂t2

(
1

4πε0

∫
V2

ρ (r′, tr)

r dτ ′
)
. (49)

If now we let9 V1 → 0, and therefore V2 → V, equa-
tion (49) will read

∇2V2 =
1

c2
∂2

∂t2

(
1

4πε0

∫
V

ρ (r′, tr)

r dτ ′
)
,

=
1

c2
∂2V

∂t2
. (50)

At last, we can sum equations (42) and (50) to find
that

∇2V1 +∇2V2 = − ρ

ε0
+

1

c2
∂2V

∂t2
,

∇2(V1 + V2)−
1

c2
∂2V

∂t2
= − ρ

ε0
,

∇2V − 1

c2
∂2V

∂t2
= − ρ

ε0
. (37)

Therefore, our guess did work for the scalar potential
after all. The proof for the vector potential follows the
same steps that we just did (after all, it is just the same
equation on three different coordinates).

Although we can already find the electromagnetic
fields in any problem we tackle (since we know how
to find the potentials and equations (25) and (26) are
the remaining step), we still haven’t found what we are
looking for: expressions for the physical fields them-
selves in terms of charges and currents, i.e., improve-
ments on Coulomb and Biot-Savart laws which still
work when charges and currents are not static (and,
of course, return to their previous versions when time
is irrelevant). Thus, the next section starts the end of
our journey.

However, I can’t help to make a final remark about
our work with retarded potentials: Riemann’s argument
would work equally well if we had picked ta = t+ rc in-
stead of tr, which would mean that the potentials would
be defined by the charge configurations in the future.
Unfortunately, physicists tend to really like causality,
which leads us to discard this solution[1].

VI. WHERE PHYSICAL INTUITION CAN’T
GO...

One might now think “if simply calculating the in-
tegrands in the past worked fine for the potentials, it
should work as well for the physical fields!”. Actually,
it is not that simple. Let’s suppose that

9 One should now not think about V1 as a set, but as its volume
instead. We could also take the limit of the set in a rigorous
way, for example through a sequence of decreasing sets which
always include r, but this level of enlightenment is not within
the purposes of this work.
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E(r, t) =

1

4πε0

∫
ρ(r′, tr)

r 2 · r̂rr dτ ′ ,

B(r, t) =
µ0

4π

∫
J(r′, tr)× r̂rr
r 2 dτ ′ .

(51)

Under this pair of equations, what are we describ-
ing? Do these fields respect Maxwell’s Equations? With
some algebra about retarded quantitites[6], it is possible
to show that the differential equations that rule these
expressions are not Maxwell’s and, therefore, our prob-
lem isn’t solved. However, finding such expressions will
tell us the problems in our suppositions, help us find
the correct fields and give new intuition of the meaning
of our final results.

Just before we start, we will write bF c for a function
F which is being evaluated at the retarded time (the
dependence on r or r′ should be understandable through
the context).

For the Gauss Law, we have that

E(r, t) =
1

4πε0

∫
bρc
r 2 · r̂rr dτ

′ ,

∇ ·E =
1

4πε0

∫
∇ ·

(
bρc
r 2 · r̂rr

)
dτ ′ ,

=
1

4πε0

∫
bρc∇ ·

( r̂rr
r 2
)
+
r̂rr
r 2 · ∇ bρc dτ

′ ,

=
1

4πε0

∫
bρc
(
4πδ3 (rrr )

)
+
r̂rr
r 2 · ∇ bρc dτ

′ ,

=
ρ

ε0
+

1

4πε0

∫ r̂rr
r 2 · ∇ bρc dτ

′ . (52)

Once more, δ3 is the three-dimensional Dirac delta
“function”.

The gradient of bρc isn’t that helpful when we talk
about keeping the calculation flow. To deal with it, and
with many other retarded identities, it will be useful to
think of them as[6]

bF c ≡
∫
δ (u)F (t′) dt′ , (53)

where u := t′− t+ rc and δ is the one-dimensional Dirac

delta. With this idea, we can see that10

∇ bρc =
∫
∇(δ (u))ρ (r′, t′) dt′ ,

= −
∫ r̂rr

c

∂δ (u)

∂t
ρ (r′, t′) dt′ ,

= − r̂rr
c

∂

∂t

∫
δ (u) ρ (r′, t′) dt′ ,

= − r̂rr
c

∂ bρc
∂t

. (54)

Therefore,

∇ ·E =
ρ

ε0
− 1

4πε0c

∫ r̂rr · r̂rr
r 2 ·

∂ bρc
∂t

dτ ′ ,

=
ρ

ε0
− 1

4πε0c

∫
1

r 2
∂ bρc
∂t

dτ ′ . (55)

By invoking equation (53) once more, we can see that

∂ bρc
∂t

=

∫
∂δ (u)

∂t
ρ (r′, t′) dt′ ,

= −
∫
∂δ (u)

∂t′
ρ (r′, t′) dt′ ,

=

∫
δ (u)

∂ρ (r′, t′)

∂t′
− ∂

∂t′
(δ (u) ρ (r′, t′)) dt′ ,

=

⌊
∂ρ

∂t

⌋
− δ (u) ρ (r′, t′)

∣∣∣∣+∞
−∞

,

=

⌊
∂ρ

∂t

⌋
. (56)

Finally, we get that

∇ ·E =
ρ

ε0
− 1

4πε0c

∫
1

r 2
⌊
∂ρ

∂t

⌋
dτ ′ . (57)

Equation (57) clearly disagrees with Gauss’s Law,
which means that the electric field is definitely wrong.
Nevertheless, let’s continue the calculation of the other
equations, so it is possible to see the effects of this wrong
guess, which may give us a hint on what effects are not
being taken into consideration.

Next, let’s see what happens to Faraday’s Law. By
taking the curl of the E field defined in equation (51),

10 To find the relations between the gradient and time derivatives
of δ (u), one might use the chain rule to write the different
derivatives in terms of u.
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it follows that

∇×E =
1

4πε0

∫
∇×

(
bρc
r 2 · r̂rr

)
dτ ′ ,

=
1

4πε0

∫
bρc∇×

( r̂rr
r 2
)
− r̂rrr 2 ×∇ bρc dτ

′ ,

=
1

4πε0

∫
bρc · 0+∇ bρc× r̂rrr 2 dτ ′ ,

=
1

4πε0

∫ (
− r̂rr
c

∂ bρc
∂t

)
× r̂rrr 2 dτ ′ ,

= − 1

4πε0c

∫
1

r 2
∂ bρc
∂t

(r̂rr × r̂rr ) dτ ′ ,

= − 1

4πε0c

∫
0dτ ′ ,

= 0. (58)

In the development of equation (58), we used equa-
tion (54) again.

Take a closer look at equation (58): by assuming
these fields, we turned off electromagnetic induction of
electric fields by the variation of magnetic fields.

To check the Magnetic Gauss’s Law, we can simply
take the divergence on both sides of the equation for B
in equation (51):

B =
µ0

4π

∫
bJc× r̂rr
r 2 dτ ′ ,

∇ ·B =
µ0

4π

∫
∇ ·

(
bJc× r̂rr
r 2

)
dτ ′ ,

=
µ0

4π

∫ r̂rr
r 2 · (∇× bJc)

+ bJc ·
(
∇×

( r̂rr
r 2
))

dτ ′ ,

=
µ0

4π

∫ r̂rr
r 2 · (∇× bJc) + bJc · 0dτ

′ . (59)

Another use of equation (53) will yield that11

∇× bJc =
∫
∇× [δ (u)J (r′, t′)] dt′ ,

=

∫
δ (u)∇× J− J×∇δ (u) dt′ ,

=

∫
0+∇δ (u)× J (r′, t′) dt′ ,

= −
∫ r̂rr

c

∂δ (u)

∂t
× J (r′, t′) dt′ ,

= − r̂rr
c
× ∂

∂t

∫
δ (u)J (r′, t′) dt′ ,

= − r̂rr
c
× ∂ bJc

∂t
,

=

⌊
∂J

∂t

⌋
× r̂rr

c
. (60)

The fact that ∂bJc
∂t =

⌊
∂J
∂t

⌋
can be proved following

the same steps taken when proving equation (56). Sub-
stituting equation (60) into equation (59) we get that

∇ ·B =
µ0

4π

∫ r̂rr
r 2 ·

(⌊
∂J

∂t

⌋
× r̂rr

c

)
dτ ′ ,

=
µ0

4π

∫
1

r 2c

⌊
∂J

∂t

⌋
· (r̂rr × r̂rr ) dτ ′ ,

=
µ0

4π

∫
0dτ ′ ,

= 0. (61)

Finally, taking the curl of B will give us an analog
for the Ampère-Maxwell Law.

∇×B =
µ0

4π

∫
∇×

(
bJc× r̂rr
r 2

)
dτ ′ ,

=
µ0

4π

∫
bJc

(
∇ ·

( r̂rr
r 2
))

+

( r̂rr
r 2 · ∇

)
bJc dτ ′

− µ0

4π

∫ r̂rr
r 2∇ · bJc+ (bJc · ∇)

r̂rr
r 2 dτ ′ ,

=
µ0

4π

∫
bJc

(
4πδ3 (rrr )

)
+

( r̂rr
r 2 · ∇

)
bJc dτ ′

− µ0

4π

∫ r̂rr
r 2∇ · bJc+ (bJc · ∇)

r̂rr
r 2 dτ ′ ,

= µ0J+
µ0

4π

∫ ( r̂rr
r 2 · ∇

)
bJc dτ ′

− µ0

4π

∫ r̂rr
r 2∇ · bJc+ (bJc · ∇)

r̂rr
r 2 dτ ′ .

(62)

11 It might be useful to note that, since J (r′, t′) depends only on
the primed coordinates, any of its derivatives with respect to
the unprimed coordinates has to be zero.
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If we want to proceed with the development of equa-
tion (62), it is going to be necessary to study the inte-
grand on the RHS for a while. Firstly, notice that, since
rrr = r− r′, it follows from the chain rule that

− (bJc · ∇)
r̂rr
r 2 =

(
bJc · ∇′

) r̂rr
r 2 . (63)

Consider then only the x-component of the quantity
in equation (63)12:

(
bJc · ∇′

)(x− x′
r 3

)
=

(
3∑
i=1

bJeic
∂

∂e′i

)(
x− x′

r 3
)
,

=

3∑
i=1

[
bJeic

∂

∂e′i

(
x− x′

r 3
)]

,

= bJc ·
[
∇′
(
x− x′

r 3
)]

,

=∇′ ·
(
x− x′

r 3 bJc
)

−
(
x− x′

r 3
)
∇′ · bJc .

(64)

However, notice that

∇′ · bJc =
∫
∇′ · (δ (u)J (r′, t′)) dt′ ,

=

∫
∇′δ (u) · J (r′, t′) dt′

+

∫
δ (u)∇′ · J (r′, t′) dt′ ,

= −
∫
∇δ (u) · J (r′, t′) dt′ +

⌊
∇′ · J

⌋
,

= −
∫
∇ · (δ (u)J (r′, t′)) dt′ +

⌊
∇′ · J

⌋
,

= −∇ ·
(∫

δ (u)J (r′, t′) dt′
)
+
⌊
∇′ · J

⌋
,

= −∇ · bJc+
⌊
∇′ · J

⌋
. (65)

With equation (65) in our hands, equation (64) reads

(
bJc · ∇′

)(x− x′
r 3

)
=∇′ ·

(
x− x′

r 3 bJc
)

+

(
x− x′

r 3
)
∇ · bJc

−
(
x− x′

r 3
)⌊
∇′ · J

⌋
.

(66)

12 To avoid big and repetitive equations, we shall write x = e1,
y = e2 and z = e3 at the following calculation and at some
other computations through the text

Next, we are going to need to use the continuity equa-
tion:

∇ · J+
∂ρ

∂t
= 0. (67)

Since equation (67) is valid at all times and points, we
are allowed to evaluate it in the sources on the retarded
time in order to get[6]

⌊
∇′ · J

⌋
+

⌊
∂ρ

∂t

⌋
= 0. (68)

By substituting equation (68) into equation (66) we
obtain

(
bJc · ∇′

)(x− x′
r 3

)
=∇′ ·

(
x− x′

r 3 bJc
)

+

(
x− x′

r 3
)
∇ · bJc

+

(
x− x′

r 3
)⌊

∂ρ

∂t

⌋
.

(69)

Combining the respective equations for each of the
coordinates, equation (69) implies that

(
bJc · ∇′

) r̂rr
r 2 =

3∑
i=1

∇′ ·
(
ei − e′i
r 3 bJc

)
êi

+

3∑
i=1

[(
ei − e′i
r 3

)
∇ · bJc

]
êi

+

3∑
i=1

(
ei − e′i
r 3

)⌊
∂ρ

∂t

⌋
êi,

=

3∑
i=1

∇′ ·
(
ei − e′i
r 3 bJc

)
êi

+

( r̂rr
r 2
)
∇ · bJc+

( r̂rr
r 2
)⌊

∂ρ

∂t

⌋
.

(70)

By substituting equations (63) and (70) into (62) we
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get that

∇×B = µ0J+
µ0

4π

∫ 3∑
i=1

∇′ ·
(
ei − e′i
r 3 bJc

)
êi dτ

′

+
µ0

4π

∫ ( r̂rr
r 2
)⌊

∂ρ

∂t

⌋
dτ ′

+
µ0

4π

∫ ( r̂rr
r 2 · ∇

)
bJc dτ ′ ,

= µ0J+
µ0

4π

3∑
i=1

∫
V
∇′ ·

(
ei − e′i
r 3 bJc

)
dτ ′ êi

+
µ0

4π

∫ r̂rr
r 2

∂ bρc
∂t

dτ ′

+
µ0

4π

∫ ( r̂rr
r 2 · ∇

)
bJc dτ ′ ,

= µ0J+
µ0

4π

3∑
i=1

∮
∂V

ei − e′i
r 3 bJc · dS′ êi

+
µ0

4π

ε0
ε0

∂

∂t

∫
bρc
r 2 · r̂rr dτ

′

+
µ0

4π

∫ ( r̂rr
r 2 · ∇

)
bJc dτ ′ ,

= µ0J+
µ0

4π

3∑
i=1

0 · êi + µ0ε0
∂

∂t
(E)

+
µ0

4π

∫ ( r̂rr
r 2 · ∇

)
bJc dτ ′ ,

= µ0J+ µ0ε0
∂E

∂t
+
µ0

4π

∫ ( r̂rr
r 2 · ∇

)
bJc dτ ′ .

(71)

In the previous calculation, the surface integrals van-
ished for the volume integrals were meant to be calcu-
lated over all space and it is physically necessary for bJc
to be zero at infinite distance.

In order to deal with the remaining integrand in equa-
tion (71), we must once more write a retarded quantity
as an integral. Notice that

( r̂rr
r 2 · ∇

)
bJc =

( r̂rr
r 2 · ∇

)∫
δ (u)J (r′, t′) dt′ ,

=

∫ [( r̂rr
r 2 · ∇

)
δ (u)

]
J (r′, t′) dt′ .

(72)

However, if we consider an identity we have been us-
ing concerning δ (u), we see that

∇δ (u) = − r̂rr
c

∂δ (u)

∂t
,

∂δ (u)

∂x
= −x− x

′

r c
∂δ (u)

∂t
,

x− x′

r 3 · ∂δ (u)
∂x

= − (x− x′)2

r 4c
∂δ (u)

∂t
,( r̂rr

r 2 · ∇
)
δ (u) = − r

2

r 4c
∂δ (u)

∂t
,( r̂rr

r 2 · ∇
)
δ (u) = − 1

r 2c
∂δ (u)

∂t
. (73)

Thus,

( r̂rr
r 2 · ∇

)
bJc =

∫
− 1

r 2c
∂δ (u)

∂t
J (r′, t′) dt′ ,

= − 1

r 2c
∂

∂t

∫
δ (u)J (r′, t′) dt′ ,

= − 1

r 2c
∂ bJc
∂t

. (74)

Substituting equation (74) into equation (71) will
yield

∇×B = µ0J+ µ0ε0
∂E

∂t
− µ0

4πc

∫
1

r 2
⌊
∂J

∂t

⌋
dτ ′ . (75)

Bringing equations (57), (58), (61) and (75) together,
we se that the fields on equation (51) are such that

∇ ·E =
ρ

ε0
− 1

4πε0c

∫
1

r 2
⌊
∂ρ

∂t

⌋
dτ ′ ,

∇ ·B = 0,

∇×E = 0,

∇×B = µ0J+ µ0ε0
∂E

∂t
− µ0

4πc

∫
1

r 2
⌊
∂J

∂t

⌋
dτ ′ .

(76)
Equation (76) shows clearly that equation (51) aren’t

the solutions for Maxwell’s Equations. On the bright
side, we got ∇ ·B correctly!

Equation (76) actually fail even to describe conser-
vation of charge! By taking the divergence of our not-
quite-Ampère-Maxwell Law, it is seen that

∇ · (∇×B) = µ0∇ · J+ µ0ε0∇ ·
(
∂E

∂t

)
− µ0

4πc
∇ ·

(∫
1

r 2
⌊
∂J

∂t

⌋
dτ ′
)
.

(77)

Since the curl of a vector field is always divergenceless
and equation (56) applies to any function just as it does
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to ρ, it follows that

0 =∇ · J+ ε0
∂

∂t

(
ρ

ε0
− 1

4πε0c

∫
1

r 2
⌊
∂ρ

∂t

⌋
dτ ′
)

− 1

4πc

∫
∇ ·

(
1

r 2
⌊
∂J

∂t

⌋)
dτ ′ ,

=∇ · J+
∂ρ

∂t
− 1

4πc

∫
1

r 2
⌊
∂2ρ

∂t2

⌋
dτ ′

− 1

4πc

∫
∇ ·

(
1

r 2
⌊
∂J

∂t

⌋)
dτ ′ ,

=∇ · J+
∂ρ

∂t
− 1

4πc

∫
1

r 2
⌊
∂2ρ

∂t2

⌋
dτ ′

− 1

4πc

∫
1

r 2∇ ·
(⌊

∂J

∂t

⌋)
dτ ′

− 1

4πc

∫ ⌊
∂J

∂t

⌋
· ∇
(

1

r 2
)
dτ ′ ,

=∇ · J+
∂ρ

∂t

− 1

4πc

∫
1

r 2
∂

∂t

(
∂ bρc
∂t

+∇ · bJc
)
dτ ′

+
1

4πc

∫
2

r 3
⌊
∂J

∂t

⌋
· r̂rr dτ ′ .

(78)

Equation (78) looks incredibly different from the Con-
tinuity Equation (which, in order to obtain ∇×B, we
actually imposed on equation (67) as a basic principle!),
but that is in fact consistent with electromagnetic the-
ory: if the Continuity Equation was satisfied, then so
would Maxwell’s Equations[6], and we have already seen
that these fields can be anything but the solutions we
seek.

Since physical intuition seems to have abandoned us,
what can we do next? Besides, what did we do wrong?

Firstly, notice that we ignored the fact that currents
and charges are essentially the same physical objects
at different speeds and, therefore, are mathematically
related (namely, by the Continuity Equation). We can,
thus, expect for E to depend on J or for B to depend
on ρ (or both).

Equations (76) and (78) give us some hints on this.
The “Uncontinuity” Equation suggests that we have not
treated the relations between ρ and J properly. The fail-
ure on Faraday’s Law suggests the same issue: our de-
scription says that E depends only on ρ and B depends
only on J. Therefore, if there are issues concerning how
E and B are related, these issues can be traced back to
our lack of respect with how we should treat ρ and J.

Furthermore, our guess never bothered at all with
how fast the quantities involved are changing, what
might be curious, since the whole idea rests on the idea
that the fields depend upon the charges and currents af-
ter some time has elapsed. Are we sure that there is no
dependence on the temporal derivatives, for example?

Equation (76) suggests this as well. After all, Gauss’s
Law and Ampère-Maxwell Law received new terms de-
pending on the time-derivatives of the charges and cur-
rents. This gives us the hint that if such quantities
were present in the initial fields on a certain way, their
divergences and curls would not have these problems.

A final argument comes from equations (26) and (38):
E depends on the time-derivatives of A, which depends
on J. It is strongly expected that E not only depends
on J, but on its time-derivative.

How can we take these problems into account when
making a new approach?

VII. ...WE BRING MATH

Apart from the mathematical hints we got from equa-
tions (76) and (78), the same arguments could be ap-
plied in order to criticize our approach towards the re-
tarded potentials. Therefore, why did that guess did
work?

The answer is simple: we did not rely only on physical
intuition, but also on the equations we had at hand. Al-
though me might think that the time derivatives might
influence the retarded potentials or that there could be
a current dependence on the scalar potential (for an ex-
ample), we had a wave equation at hand (equation (37))
to support our guess. It was the mathematical structure
of the differential equations that described the poten-
tials suggested us that solution, not simply the physical
considerations we could make on the problem. Thus,
lets retrace our procedures in order to find the correct
expressions for the physical fields.

Our derivation of the retarded potentials (equation
(38)) started by taking a look at the wave equations
they respected (equation (37)), identifying their sources
and then solving the equations13. However, in our pre-
vious attempt to find the equations for the physical
fields we ignored the labor of finding a wave equation
and simply guessed that there should be one with ρ and
J as sources! In order to fix this, let’s take our steps
once more.

13 It might seem odd to say that we solved a partial differential
equation without specifying the boundary and initial condi-
tions. Implicitly, we assumed the fields must vanish at infinity,
when they are apart from any charges and currents. We also
hid the homogenous component of the solution, which can be
understood as fields which were not originated by charges or
currents, but were present in the Universe from the very begin-
ning. Finally, the temporal dependence hides in the expressions
for the charges and currents as well. Essentially, we are study-
ing the forced oscillations caused in the electromagnetic fields
by charges and currents without taking into account the free
oscillations. I appreciate João C. A. Barata’s precious expla-
nations when looking for the initial condition’s hideout.
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Let’s start with Faraday’s Law and take the curl of
each side of the equation. We will then have that

∇×E = −∂B
∂t
,

∇× (∇×E) = −∇×
(
∂B

∂t

)
,

∇(∇ ·E)−∇2E = − ∂

∂t
(∇×B) . (79)

To keep it going, we will also need to remember
Gauss’s Law and Ampère-Maxwell Law, in order to get
rid of ∇ ·E and ∇×B.

∇
(
ρ

ε0

)
−∇2E = − ∂

∂t

(
µ0J+ µ0ε0

∂E

∂t

)
,

1

ε0
∇ρ−∇2E = −µ0

∂J

∂t
− µ0ε0

∂2E

∂t2
,

∇2E− µ0ε0
∂2E

∂t2
=

1

ε0
∇ρ+ µ0

∂J

∂t
. (80)

Through a similar procedure, we can start with
Ampère-Maxwell Law and see that

∇×B = µ0J+ µ0ε0
∂E

∂t
,

∇× (∇×B) = µ0∇× J+ µ0ε0∇×
(
∂E

∂t

)
,

∇(∇ ·B)−∇2B = µ0∇× J+ µ0ε0
∂

∂t
(∇×E) .

(81)

If we recall Faraday’s Law and the Magnetic Gauss’s
Law, it will follow that

∇(0)−∇2B = µ0∇× J− µ0ε0
∂

∂t

(
∂B

∂t

)
,

−∇2B = µ0∇× J− µ0ε0
∂2B

∂t2
,

∇2B− µ0ε0
∂2B

∂t2
= −µ0∇× J. (82)

Writing equations (80) and (82) together we see that


∇2E− µ0ε0

∂2E

∂t2
=

1

ε0
∇ρ+ µ0

∂J

∂t
,

∇2B− µ0ε0
∂2B

∂t2
= −µ0∇× J.

(83)

We’ve just found out that the physical fields also obey
a pair of wave equations! Furthermore, now we know
which quantities actually represent the sources of these
electromagnetic waves: not ρ and J, as we thought be-
fore, but ∇ρ, ∂J∂t and ∇×J instead. These differential

equations agree with our previous expectation that E
would depend on the time-derivative of J.

The best part of finding these wave equations is that
now we are facing a problem we have already solved be-
fore. Equation (83) are essentially the same as equation
(37), and the solution to this equation was given by the
retarded potentials in equation (38). Therefore, since
the mathematical structures are essentially the same,
the solutions to equation (83) must be given by


E(r, t) = − 1

4πε0

∫ ⌊
∇′ρ

⌋
r dτ ′ − µ0

4π

∫
1

r

⌊
∂J

∂t

⌋
dτ ′

B(r, t) =
µ0

4π

∫ ⌊
∇′ × J

⌋
r dτ ′

(84)

The same argument given in Section V to prove the
solution given for V applies in here for the physical fields
we just proposed.

Although equation (84) does solve Maxwell’s Equa-
tions, they look very different from equations (20) and
(21)! We can’t see yet if those equations are satisfied
when we go back to static charges and currents, or if
they are true under other conditions[7]! Therefore, our
work in here isn’t over yet and it is time to find a better
expression.

Firstly, we already know an algorithm to deal with
retarded quantities (namely, equation (53)). Let’s then
apply it to express

⌊
∇′ρ

⌋
in another way:

⌊
∇′ρ

⌋
=

∫
δ (u)∇′ρ(r′, t′) dt′ ,

=

∫
∇′ (δ (u) ρ(r′, t′))−∇′δ (u) ρ(r′, t′) dt′ ,

=∇′
∫
δ (u) ρdt′ +

∫
∇δ (u) ρdt′ ,

=∇′ bρc −
∫ r̂rr

c

∂δ (u)

∂t
ρ(r′, t′) dt′ ,

=∇′ bρc − r̂rr
c

∂

∂t

∫
δ (u) ρ(r′, t′) dt′ ,

=∇′ bρc − r̂rr
c

∂ bρc
∂t

. (85)
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Joining equations (84) and (85), we see that

E(r, t) = − 1

4πε0

∫
V

∇′ bρc
r dτ ′

+
1

4πε0

∫
V

r̂rr
cr

⌊
∂ρ

∂t

⌋
− 1

c2r

⌊
∂J

∂t

⌋
dτ ′ ,

= − 1

4πε0

∫
V
∇′
(
bρc
r

)
− bρc∇′

(
1

r

)
dτ ′

+
1

4πε0

∫
V

r̂rr
cr

⌊
∂ρ

∂t

⌋
− 1

c2r

⌊
∂J

∂t

⌋
dτ ′ ,

= − 1

4πε0

∮
∂V

bρc
r dS′ +

1

4πε0

∫
V
bρc r̂rrr 2 dτ ′

+
1

4πε0

∫
V

r̂rr
cr

⌊
∂ρ

∂t

⌋
− 1

c2r

⌊
∂J

∂t

⌋
dτ ′ ,

= 0+
1

4πε0

∫ r̂rr
r 2 bρc+

r̂rr
cr

⌊
∂ρ

∂t

⌋
dτ ′

− 1

4πε0

∫
1

c2r

⌊
∂J

∂t

⌋
dτ ′ ,

=
1

4πε0

∫ r̂rr
r 2 bρc+

r̂rr
cr

⌊
∂ρ

∂t

⌋
− 1

c2r

⌊
∂J

∂t

⌋
dτ ′ .

(86)

In order to obtain equation (86), we used the fact
from vector calculus that14∫

V
∇T dτ =

∮
∂V
T dS . (87)

Besides, the surface integral vanished due to the fact
that the volume integral was to be carried on the whole
space and the charges vanish at infinity.

To “open” the integral for the magnetic field in equa-
tion (84), we need to understand

⌊
∇′×J

⌋
. We can see

that⌊
∇′ × J

⌋
=

∫
δ (u)∇′ × J(r′, t′) dt′ ,

=

∫
∇′ × (δ (u)J(r′, t′)) dt′

−
∫
∇′δ (u)× J(r′, t′) dt′ ,

=∇′ ×
∫
δ (u)J(r′, t′) dt′

+

∫
∇δ (u)× J(r′, t′) dt′ ,

=∇′ × bJc −
∫ r̂rr

c

∂δ (u)

∂t
× J(r′, t′) dt′ ,

=∇′ × bJc − r̂rr
c
× ∂

∂t

∫
δ (u)J(r′, t′) dt′ ,

=∇′ × bJc − r̂rr
c
× ∂ bJc

∂t
. (88)

By substituting equation (88) into equation (84) we
obtain that

B(r, t) =
µ0

4π

∫
V

1

r∇
′ × bJc − r̂rr

cr ×
∂ bJc
∂t

dτ ′ ,

=
µ0

4π

∫
V

1

r∇
′ × bJc+ 1

cr
∂ bJc
∂t
× r̂rr dτ ′ ,

=
µ0

4π

∫
V
∇′ ×

(
bJc
r

)
−∇′

(
1

r

)
× bJc dτ ′

+
µ0

4π

∫
V

1

cr
∂ bJc
∂t
× r̂rr dτ ′ ,

= −µ0

4π

∫
∂V

bJc
r × dS′ − µ0

4π

∫
V

r̂rr
r 2 × bJc dτ

′

+
µ0

4π

∫
V

1

cr
∂ bJc
∂t
× r̂rr dτ ′ ,

= 0+
µ0

4π

∫
1

r 2 bJc× r̂rr dτ
′

+
µ0

4π

∫
1

cr
∂ bJc
∂t
× r̂rr dτ ′ ,

=
µ0

4π

∫ [
1

r 2 bJc+
1

cr

⌊
∂J

∂t

⌋]
× r̂rr dτ ′ . (89)

Again, we used a fact known from vector calculus15:

∫
V
∇×Tdτ = −

∮
∂V

T× dS . (90)

Just as before, the surface integral vanishes due to phys-
ical restraints: the currents must vanish at infinity.

Finally, equations (86) and (89) read
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E(r, t) =

1

4πε0

∫ r̂rr
r 2 bρc+

r̂rr
cr

⌊
∂ρ

∂t

⌋
− 1

c2r

⌊
∂J

∂t

⌋
dτ ′ ,

B(r, t) =
µ0

4π

∫ [
1

r 2 bJc+
1

cr

⌊
∂J

∂t

⌋]
× r̂rr dτ ′ .

(91)

Equation (91) are known as Jefimenko’s Equations,
which seem to have been first published in this form by
Jefimenko[1, 8] in his textbook, [9]. However, Panof-
sky and Phillips found an equivalent expression in their
textbook, [10]. Equation (14-34) is already identical to
Jefimenko’s expression for the magnetic field. The ex-
pression for the electric field is also equal to the one
we found, and this can be seen by applying the Inverse
Fourier Transform to equation (14-36).

Notice that Jefimenko’s Equations are indeed general
forms of Coulomb and Biot-Savart Laws. If we hold ρ
and J constant as time goes by (i.e., impose ∂ρ

∂t = 0 and
∂J
∂t = 0), equation (91) recovers equations (20) and (21).
Moreover, they exhibit the validity domain of Coloumb
and Biot-Savart Laws (e.g., we can see that Biot-Savart
Law holds regardless of the time-dependence of ρ, as
long as J is constant over time)[7].

As we expected, Jefimenko’s Equations solves the is-
sues we found with our guess at Section (VI): they do
depend on time-derivatives and E does depends on J
(actually, ∂J∂t ). It is interesting that the terms that once
appeared at ∇·E and ∇×B now appear at E and B,
with few modifications. In addition, the time-derivative
of J appearing at the expression for E shall fix the issue
with Faraday’s Law, as predicted (previously, we stated
that ignoring the connection between ρ and J would
lead to the lack of connection between E and B).

The importance of these equations, besides the feeling
of closure given to Classical Electrodynamics, relies on
their physical meaning: we see now that instead of a
cycling causality between the physical fields, with B
generating E and vice versa, they are directly caused
by the charges and currents. They also might be used
to find the Heaviside-Feynman expressions for the fields
generated by a point charge[11].

VIII. CONCLUSIONS

Although Jefimenko’s Equations (equation (91)) may
make the potential formulation look unnecessary, one
should keep in mind that eventually he or she would
need to actually compute all the integrals involved when
trying to describe the motion of charges. It is, in gen-

eral, easier to solve four problems (the potentials) in-
stead of six (the physical fields) when applying the the-
ory. Indeed, one could obtain Jefimenko’s Equations by
taking the derivatives (equations (25) and (26)) of the
retarded potentials (equation (38))[1].

Nevertheless, Jefimenko’s Equation still exhibit phys-
ical meanings that were previously hidden and are tools
which can be used to tackle new problems. Under their
light, we can see the independence between electric and
magnetic fields: Faraday’s Law is a consequence of the
dependence of the electromagnetic fields on the charges
and currents. Although changes in the magnetic field
seem to cause changes in the electric field, this is much
more a coincidence than it is a fact: the entities re-
sponsible for the changes in the magnetic field are also
responsible for changes in the electric field, for each one
of them can be determined independently of the other
by simply knowing the charge and current distributions.

Finally, as noted by Lemos in [8], physical intuition
should be handled with care, since it can easily lead
us towards mistakes. The appropriate mathematical
attention should be taken to avoid such confusions. As
I read once in a while at the office of some dear friends,

Where physical intuition can’t go, we bring
math; i.e. we bring math almost every-
where.

Unfortunately, the author of this phrase is still un-
known to me.
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brother, the Divergence Theorem. Therefore, Appendix con-

tains a proof sketch.
15 Just as for equation (87), you can find an argument in defense

of this identity at the Appendix .
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Appendix: Corollaries of vector calculus

The main goal of this appendix is to “prove” equation
(87),

∫
V
∇T dτ =

∮
∂V
T dS , (87)

and equation (90),

∫
V
∇×T dτ = −

∮
∂V

T× dS , (90)

which were neccessary at Section VII.
In order to prove equation (87), let’s start with the

Divergence Theorem:

∫
V
∇ ·Tdτ =

∮
∂V

T · dS . (A.1)

Take T to be given by T = kF , where k is a constant

vector. It follows that∫
V
∇ · (kF ) dτ =

∮
∂V

(kF ) · dS ,∫
V
F ·∇ · k+ k · ∇F dτ = k ·

∮
∂V
F dS ,∫

V
k · ∇F dτ = k ·

∮
∂V
F dS ,

k ·
∫
V
∇F dτ = k ·

∮
∂V
F dS . (A.2)

Since this expression holds for any constant vector k,
we conclude that∫

V
∇F dτ =

∮
∂V
F dS , (A.3)

which is equation (87).
A similar reasoning allows us to prove equation (90).

LetT = F×k, where k is, once more, a constant vector.
It follows that∫

V
∇ · (F× k) dτ =

∮
∂V

(F× k) · dS ,∫
V
k · ∇× F− F · ∇× k dτ = −

∮
∂V

(k× F) · dS ,∫
V
k · ∇× F− 0 dτ = −

∮
∂V

k · (F× dS),

k ·
∫
V
∇× F dτ = −k ·

∮
∂V

F · dS .

(A.4)

Since the expression holds for any constant vector k, it
follows that ∫

V
∇× F dτ = −

∮
∂V

F · dS . (A.5)

This proves equation (90).
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