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1 What is the size of a set?

The motivation for the study of Measure Theory comes from the notion of lengths, areas,
and volumes. These concepts can be regarded as functions m: Domm — R with some
specific properties, where R = R U {—o00, +0o}*. Usually, we know how to compute the
lenghts, areas and volumes of lines, squares, cubes and even more complicated shapes,
such as the ones found when dealing with multiple integrals in multidimensional Analysis.
Our goal is to obtain a function that attributes the volume® of an arbitrary subset of R™.
Thus, we pick Dom m = P(R™).

First of all, we know volumes are strictly positive, and thus we may demand in our
definition that m(E) > 0,V E € P(R™).

We know that the volume of two disjoint sets if simply the sum of the volumes of each
individual set. Therefore, m(E u F) = m(E) + m(F),VE,F € P(R™).

Notation:
We denote the union of two disjoint sets E, F as E Lt F. The set E L F is identical to the
set E U F, but the notation u indicates that E n F = @. *

We also know volumes are invariant under some kinds of transformation. If a trans-
formation 3: R™ — R™ preserves the distance between points - exempli gratia, rotations
and translations -, then is should hold that m(3(E)) = m(E),VE € P(R™). We shall re-
fer to these transformations 3 with a certain frequency, which motivates us to define a
movement.

Definition 1 [Movement]:
Let n € N and consider the metric space (R™, d), where d is the Euclidean metric. A
movement in R™ is an isometry 3: R™ — R™, id est, a bijection from R™ onto itself such that

d(B(x),B(y)) = d(x,y),Vx,y e R™ (1.1)
[ )

Notice that the movement of a set E € P(R™) is simply the image of the set under that
movement. Thus, we demand m to be invariant under movements.

*We shall make this more formal in a while. For now, let us concentrate on the intuitive notions.
tFor simplicity, let us say only “volume”, but of course the same could be said about lengths and areas



Finally, if we expect to obtain a uniqueness theorem concerning the existence of
volumes on R™, we should impose a normalization condition. Therefore, we shall require
that m ((0,1]™) = 1.

We now have four axioms concerning the function m: P(R™) — R:

i m(E) >0,YEe P(R") - R;

ii. m(EuF) = m(E) + m(F),VE,Fe P(R™);
iii. for any movement f3: R™ — R™, (mo 3)(E) = m(E),VE € P(R™);
iv. m((0,1]™) = 1.

The problem we want to solve is, Vn € N, to find such a function.

Sadly, it has been proven by Hausdorff in 1914 that such a problem has no solution in
R™ with n > 3. In 1924, Banach showed the problem does admit a solution for n < 3, but
such a solution is not unique.

The reason the problem fails to have a solution for n > 3 is the fact that ZFC (Zermelo-
Frankel Set Theory with the Axiom of Choice) does not respect the following Galilean
principle:

A body, upon being separated in finitely many parts, can be recombined
through movements in a way such that the final occupied volume exceeds
the initial volume.

Indeed, the Axiom of Choice allows for the proof of the Banach-Tarski Theorem.

Banach-Tarski Theorem:
Let n € N,n > 3. Let E, F € P(R™) be limited sets with non-empty interior. Then there are
ke NE e P(E),ie {i}l;E nE = &,¥1i # j and movements Bi: R™ — R™,ie {i}l,
such that
k k
| JEi=E [JBu(E)=F (1.2)
i=1 i=1 ]

If there were a function m: P(R™) — R satisfying the properties we have previously
required, this would lead to contradiction.
Firstly, notice that induction allows us to conclude that

k k
m ( Ei> = > m(Ey). (1.3)
i=1 i=1

This holds for any collection of finitely many disjoint sets.
Furthermore, notice that E € F = m(E) < m(F). Indeed,

F=(FnE)u (FNE®,

F=EuUF\E,
m(F) = m(E) + m(F\E),
m(F) > m(E). (1.4)



For every i e {i}]f:l, let us define F; = E; and Fi 1 = Ei+1\|_|}=1 F;j. This defines a
finite sequence of sets such that F; < E;,V € {i}}_; and | |*_, Fi = |JX_; Ei. Thus, we have

~(Us) ()

k
Z m(Fy),
;1
i=1

1

)

1

(1.5)

Therefore, if we consider the statement of the Banach-Tarski Theorem, we see that

k
m(E) = > m(Ey). (1.6)
i=1

Furthermore, since m is invariant under movements,

K
m(F) =m (U Bi(Ei)> ,
=1

P
—_

k

< ), m(Bi(Ed)),

«
=) m(Ey),

=m(E). (1.7)

P
—_

This might not seen like a problem at first. However, notice that the result holds for
any F. In particular, let us pick E = (0,1]™ and F = (0,1]™"! x (0,2]. Notice that

F=(0,1]"u(0,1]™ ! x (1,2]. (1.8)

Notice that (0,1]™"! x (1,2] = B(E), where f: R™ — R™ is given by B(x1,- -+ ,xn) =
(x1,- -+ ,Xn + 1), which is a movement. Thus, we get that

F=EuBR(E),
m(F) = m(E) + m(B(E)),
_2 (1.9)

However, we have seen that m(F) < m(E), which leads us to the conclusion that2 < 1,
which is clearly wrong.
We may state another similar problem. In our current formulation, it holds that

m (l_ﬂle Ei = Z]le m(Ei)), but it would be interesting for this condition to hold more

generally. After all, it might seem reasonable that the volume of a set made of countably
many disjoint sets is the sum of their individual volumes. We would then be interested in
finding a function m: P(R™) — R such that



i. m(E) > 0,YE e P(R") — R;

it m (L5 E) = m(E) + m(F), ¥ (Ed) oy € PR
iii. for any movement 3: R™ — R™, (mo )(E) = m(E), VE € P(R™);
iv. m((0,1]™) = 1.

This new problem might seem silly, since its easier version was already unsolvable
in dimensions equal to or higher than 3. However, we must acknowledge that such a
restriction could force the solutions (that do exist) to dimensions n = 1,2 to be unique.
Vitali proved in 1905 that is doesn’t happen and, in fact, such a problem admits no solution
in any dimension. It might be instructive to see this in dimension n = 1.

Lemma 2:
Yy eR, let By: R — Rdenote the function 3 (x) = x +y. By is a movement. O

Proof-:
Letx,y,ze R.

d(Bz(X)r BZ(U)) = |BZ(X) - BZ(H)L

=x+z-y—1z,

=Ix—yl
= d(x,y). (1.10)

This concludes the proof. [

Lemma 3:
Suppose m: P(R) — R is a function such that

i. m(E) = 0,YE e P(R) — R;
ii. m (L% Ei) = m(E) + m(F),V (E)ien € P(R)Y;
iii. for any movement : R — R, (mo B)(E) = m(E),VE € P(R);

iv. m((0,1]) = L.

Then m((a,b]) =b—a,Va,beR,a<b. O

Proof-:
Suppose a = 0,b € N*. If b = 1, the result is trivial. Let us assume then that b > 1.
If, Vy € R, we define 3 : R — R through ,(x) = x +y (Lemma 2 guarantees this is a



movement), we can write

b-1
(0,b] = (m,n+1]j,
o
= Bn((ol 1])/
n=0
b-1
m((O,b]) = m(Bn((O/ 1]))/
n=0
b-1
= 2, m((0,1]),

(1.11)

Since we know m((0,b — a]) = b — q, it follows that m((a,b]) = b — a whenever
b —aeN, for B4 is a movement. Due to this same reason, we might without any loss of
generality always assume a = 0 and simply prove the result for (0, b], forb € R;.

If b € Q4, then we know that there are integers (which we can take to be natural
numbers, since b > 0) p and q, q # 0, such that b = %. Notice that m((0, gb]) = p due to
our previous result. However

q
(0,gb] = | J(b-(n—1),b-n],
q
= || Bn-1yu((0,b]),

q
m((O, qb]) = Z m(B(n—l)b((Oib])) ’

nummng. (1.12)

This proves the result whenever b — a € Q. We must now deal with the case in which
b—ae R+\Q

Suppose b € R \Q. Let us define a sequence (Yn )nen € QN such that yn1 > yn >
Yo = 0,Yn € Nand yn — b. This is possible, since R is the closure of Q in the standard



topology. Thus, we may write

+00
O,6] = || (Un,Yyn+1l,
n=0
+o00
m((0,b]) =m ( (ymyn+1]> ,
n=0
+00
= Z m ((Yn, Yn+1]),
n=0
+00
= Z y‘rl—i—l - yTL/
n=0
N
= Jim TLZ_OynH — Yn,
- 1 _
NiTooyN Yor
- nl—lg-looyn’
=b. (1.13)
This concludes the proof. [

Theorem 4:
There are no functions m: P(R) — R such that

i m(E) >0,YEe P(R) - R;

ii. m ({7 Ei) = m(E) + m(F),V (Ei)iey € P(R)Y;

iii. for any movement 3: R — R, (mo )(E) = m(E),VE € P(R);
iv. m((0,1]) = 1. O

Proof:

Let us begin with a generic closed interval [a, b]. Notice that m([a, b]) = b—a. Indeed,
since [a,b] < (a—¢,b],V e > 0, we get that m([a,b]) < m((a—e¢,b]) =b—a+¢,Ve>0.
Thus, m([a,b]) =b — a.

Let us introduce an equivalence relation ~ in [0,1]. We shallsay x ~y < x —y € Q.
This is an equivalence relation indeed:

i. x~x,forx—x=0eQ;
ii. ifx ~y, thenx —y € Q. Sincey — x = —(x —y) € Q, we see thaty ~ x;

iii. ifx ~yandy ~ z, thenx —y,y —z € Q. Therefore, x —z=(x —y) + (y —2) € Q
and we see that x ~ z.

Since ~ is an equivalence relation on [0, 1], its equivalence classes constitute a disjoint
covering of [0, 1]. The Axiom of Choice allows us to create a set V comprised of one, and
only one, element from each equivalence class.



Vy e R, let By: R — R denote the movement 3, (x) = x + y. It is indeed a movement
due to Lemma 2. Givenr, s € Q, I claim that 3,(V) n 35(V) = @ whenever r # s.

Suppose x € B+(V) n Bs(V). Since x € B+(V), thereisy € V such that x = y + r. Since
x € Bs(V), thereis z € V such that x = z+s. As a consequence, we see thatz =y + (r —s).
If we write ¢ = r — s (notice that q € Q), we see that z—y = q. Therefore, z ~ y. However,
by definition of V, there are no two distinct elements of V that are equivalent. Therefore,
we conclude z = y and thus r = s.

I now claim that, if we define Q; = Q n [—1,1],

0,1 < [ | B+(V) = [-1,2]. (1.14)
reQq

Let x € V. By construction, V < [0, 1], and therefore x < 1. Thus, if r € Q;, we know
thatx +r < 1, for r < 1. Similarly, we know that x > 0 and r > —1. Thus, x + v > —1. This
proves (V) < [—1,2],Vr e Q. Since B+(V) n Bs(V) = @ whenever r # s, it follows that

| | B+(V) = [-1,2]. (1.15)
TeQ

Let now x € [0, 1]. Then x is in some equivalence class E of ~. We know there is one,
and only one, y € E n V. Since x,y € [0,1], we know that x —y € [-1,1]. Since x,y € E,
x —Yy € Q. Thus, there is some r € Q; such that x = y + r. Therefore, x € 3.(V). We
conclude that

[0,1]< | | B+(V). (1.16)
Te@Q

We now may see that, since Q is countable,

o1 | ] B(v)=[-12]

TeQq
m([0,1]) <m ( | ] B+(V) | <m([-1,2]),
TeQ
1<) m(Be(V) <3,
TeQ
1<) m(V)<3. (1.17)
TeQq

This inequality fails for any value of m(V), finite or infinite. If m(V) = 0, then we
get that 1 < 0. If m(V) > 0, then we get that +0o < 3. Thus, it is impossible for such a
function m to exist. |

The interest in proving Theorem 4 comes in the search for an answer to the question
“What did we do wrong?”. Some axiom (or axioms) assumed in the definition of m must
have been too strong, to the point of leading us into failure.

The proof to Theorem 4 showed us where the problem arose: there was some set V (the
so-called Vitali Set) which could not be measure, and assuming it could be measured led



to a contradiction. Similarly, with the Banach-Tarski Theorem, there would be no paradox
if at least some of the sets that decompose E were actually impossible to measure.

Perhaps we were too greedy when trying to measure every possible set of P(R™). We
shall now abandon our original goal of measuring every possible set and, instead, simply
try to measure many sets.

2 Set Structures

Since measuring every element of P(R™) failed, we must now pursue the families of sets
which we could measure. Thus, instead of dealing directly with the functions that attribute
volume to sets, let us first be humble and prepare the stage.

Definition 5 [Symmetric Difference]:
Let M be a set. Given E,F € P(M), we define the symmetric difference of E and F,
denoted EAF, is defined as
EaF=(EUF)\(EnF). (2.1)

Lemma 6:
Let M be a set, E,F € P(M). Then

EAF = (E\F) u (F\E). (2.2)
(Il
Proof:
EAF=(EUFN\(ENTF),
=(EUF)Nn(EnFS,
=(En(EnF)U(FA(ENF)),
=(EnF)u (FNE®,
= (E\F) u (R\E). (2.3)
Since E\F < E and F\E = F n E° < E°, we see that (E\F) n (F\E) = . [ ]

Proposition 7:
Let M be a set. Given E,F, G € P(M), it holds that

i. EAF = FAE;
ii. EA(FAG) = (EAF)AG. O
Proof-:

For commutativity, one just needs to see that

EAF = (EUF\(EnF),
=(FUE)\(FUE),
= FAE. (2.4)



Associativity demands a bit more calculation:

(EAF)AG = [(EAF) n G®] U [(E2F)* N G],
={[(EnF)U(FAE)] NG} U [(EAF)® N G],
=[EnFAGIU[FNE NnGJU{[(EUF) N (E°UF)]° NG},
=[EnFAGJU[FNE NG ]U{[(E°nF) U (EnF)]nG},
=[EnF NG lU[FNE NG JU[E° N FFNG]U[ENnFNG],
=[FFNG*NnE]JU[FAG NE°]U[GNF NE]JU[FNGANE],
=[FAG NEJU[GNFNE]JU[FFNG* NnE]U[FNGANE],
=[FAG NEJU[GAF NnEJU{[(FFNG®) U (FnG)]nE},
=[FAG*nEJU[GNF NE]U{[(FUG) N (FFUG®]°nE},
={[(FAG®) U (GNF)]NE}U[(FAG) ],
= [(FAG) nE°] U [(FAG)® N E],
= (FAG) A,
= EA (FAG). (2.5)
This concludes the proof. |
Lemma 8:
Let M be a set and let E,F € P(M). SupposeE n'F = &. Then EAF =E U F. O
Proof:
EAF = (EUF\(EnF),
= (EuUF)\g,
=EUF (2.6)
This concludes the proof. n
Lemma 9:
Let M be a set and let E,F € P(M). Suppose F < E. Then EAF = E\F. O
Proof:
EAF = (EUF\(EnF),
=E\F. (2.7)
This concludes the proof. [

Since A is associative, we may define its action on a non-empty finite family of sets.

Definition 10 [Symmetric Difference of a Family]:
Let Mbe aset, me N, & = {Ei}i; < P(M). We define the symmetric difference of the
family €, AE, through
AE = E1A - AR, (2.8)



We might also use the notation A", Eq,. [ )

Proposition 11:
Let Mbeaset, meN, {En}n-; < P(M). Then

ANEr={peM;pe Ei for an odd quantity of Ei} . (2.9)

n=1

Proof-:

Let us prove this by induction on m. We begin with m = 2.

We know that EAF = (E U F)\(E n F). Thus, if x is in neither E nor F, then x ¢ EAF. If
x € EnF, thenx ¢ EAF. Ifeitherx e Eorxe F,thenx e EUF, butx ¢ EnF. Thus, x € EAF.

Suppose now x € A:L:ll En. If x€ By, thenx ¢ EnA [A:ﬁ;ll En] = A" E, and x
is in an even number of E; (for it was in an odd number of E; when E,,, was ignored). A
similar reasoning covers the three other cases and concludes the proof. |

Notation:

Let M and N be sets. Let f: M — N be a function. Given E € P(N), we denote its
preimage by f~}(N). Given a family & < P(N), we denote the family of the preimages of
the elements of € through

F1(e) = {f*l(E) e P(M);E € 8} . (2.10)
.

Definition 12 [Infima and Suprema of Sequences of Subsets]:
Let M be a set. Let (Eq)nen € IP’(M)N. We define the infimum infnen En of (En)nen
through

+00
inf Ey = ﬂo En. (2.11)
n=

Similarly, we define the supremum inf, ey Er, of Ei through

+00
supEn = | J En. (2.12)
neN n=0 'y

Remark:

Notice that inf,en Ey, is the largest set contained in every En, whilst sup, _ En, is the
smallest set containing every E,. “Largest” and “smallest” should be understood in terms
of the inclusion order. &

Definition 13 [Limits of Sequences of Subsets]:
Let M be a set. Let (En)nen € IP’(M)N. We define the superior limit of (En)nen,
limsup, . En, through
limsup E,, = inf sup Ex. (2.13)

n—-+00 NeNy>n

~-10-



Similarly, we define the inferior limit of (En)nen, iminfy_, o En, through

IT{IBJlrlg En = ?:;11\)1 ﬁ;fm Ex. (2.14)

If it holds that limsup,, _,,  En = liminf,, ., En, the sequence (En)nen is said to
converge to £, where E = limsup, _, En = liminf,, En, and we write

lim En - E. (2.15)
n—-+0o
o

Proposition 14:
Let M be a set. Let (Ep )nen € P(M)Y. Then the following statements hold:

i iminf, o En ={peM;IneN;peEy,Vk =n};
ii. limsup,, . En={peM;VneN,Ik>mn;pely};
ili. liminfy 0 En S limsup, . Exn;
iv. [liminfy o En]® = limsup, . EnCand [limsup, En]c = liminfn_ 100 En%;
v. (limsup, . En)\(liminfn, o En) =limsup, . (EnAEn ). O
Proof:

i. Assume p € liminf,_,;o En. Due to the definition of liminf, this means that
P € sup, .yinfi=n Ex. Thus, there is some n € N such that p € infi>n Ey, id est,
pe kg, Vk=n.

Suppose now that 3n € N;p € Ex,Vk > n. Then it means p € infy>n Ex. Asa
consequence, p € sup, _yinfy>n Ex = liminf, . En.

ii. Assume p € limsup,_, En. Due to the definition of limsup, this means that
p € infhen supy-, Ex. Thus, ¥neN,pe supy.,, Ex, idest, yneN,3k = n;p € Ex.

Suppose now that ¥n € N,3k > n;p € Ex. Then it means that Vn € N, p €
Supy.~ ., Ek. As a consequence, p € infpey Supy -, Ex = lim Sup,, . En-

iii. Assume thatdn e N;p € Ey,Vk > n. Let m € N. If m < n, then we know there is
k = m such that p € Ey, for every k > n > m satisfies this. If m > n, then we know
that every k > m is such that p € Ey, for every k > m > n satisfies this. From the
previous items follows the thesis.

—-11 -



iv. This is a consequence of de Morgan’s laws:

= limsup Ex; (2.16)

c oo +oo ¢
[IimsupEn] = [ﬂ Ek] /

n—+oo

n=0k=n

sup inf E°,
neN k=n

= liminf E,°. (2.17)

n—+oo

v. Let us assume p € [lim SUP, oo En] \ [liminfy,_, 4o En]. Notice that, due to previ-
ous items,

(o]
oS [lim sup En} \ [lim inf En] = {lim sup En} N [lim inf En] ,

n—+00 n—+o00 n——+00 n—-+00
= {lim sup En} N [lim sup Enc} . (2.18)
n—+oo n—+o00

Thus, Yk e N,3n,m > k;p € E,, n ES,. We want to show that Vk e N,d3n > k;p €
EnlEng.

Let us prove this by contradiction. Assume 3k € N;Vn > k,p ¢ Eqn2aEn4q. If
P ¢ EnAEL 1, then

C

P € [EntEni1]® = [(En U Eni1) 0 (En 0 Enya)?],
= (En ) En+1)c |\ (ETL M ETL+1)I
= (Enc N En+1c) Y (En N En+1)- (2.19)

Suppose, for a given n > p, that p € E,,. Since p ¢ EAE,1, it follows that
P € (En® nEni1%) U (En N Eng1). The fact that p € E,, implies then that p € Ey 1.

—-12 —



As a consequence, we see that p € E;,, Vm > n, and thus it can’t hold that Vn €
N,3m > n;p e ES,,. Thus, p € limsup,,_, . (En2En41), proving that

(lim sup En> \ <lirn inf En> C limsup (EnAEn41). (2.20)

n—+oo n—+oo n—-+oo

Let us suppose now that p € limsup, . (En2Eni1). ThenVk e N, 3n > k;p €
EnAEn41. Since

{lim sup En} \ [lim inf En] = {lim sup En] N [lim sup Enc} , (2.21)
n—+o0 n—+oo n—-+oo n—+oo
we want to prove that Vk e N,dn,m > k;p € E,, n ES,,.

Let us prove the contrapositive of this implication. Assuming 3k € N;Vn,m >
k,p ¢ En nES, idest, p e (En nES) = ES U Em, we want to prove that 3k €
N;Vvm > k,p € [EmAEm+1]°. In particular, we might take m = n + 1 and see
that 3k €e N;Vn > k,p € E§ U E;,41. We may also take n = m + 1 and see that
ke N;Vm >k, pe kS | uEn. Thus, wesee that ik e N;Vm > k

p € [ES U Bmr1] 0 [ES1 U Bm] = [Em\Em+1]® 0 [Ema1\Em]%,
= [(Em\Em+1) U (Em+1\Em]C,
= [Em2Em1]°, (2.22)

and therefore we have proven the contrapositive of the statement that

limsup (EnAEn41) S (hm sup En) \ <limJirnf En> . (2.23)

n—+oo n——+oo

Joining these two results, we conclude, as desired, that

<lim sup En> \ <lim inf En> = limsup (EnAEn41), (2.24)
n—+o0 n—+00 n—+o0
concluding the proof. [

Definition 15 [Monotone Sequences]:

Let M be a set and let (Ep )nen € IP’(M)N . The sequence (En, )nen is said to be increasing
if, and only if, E;, < E;41,Vn € N. It is said to be decreasing if, and only if, E,, 11 < En. It
is said to be monotone if, and only if, it is increasing or decreasing. [ )

Proposition 16:
Let M be a set and let (Ex)nen € P(M)Y be a monotone sequence. (En)nen converges. If
(En)nen is increasing, then

nl—lgrloo En = ilég En. (2.25)
On the other hand, if (Eq)nen is decreasing, then
lim E, = inf E,,. (2.26)
n—+oo neN

O

~13-



Proof:

We shall do the proof for the case in which (Er, )nen. The case for a decreasing sequence

follows from a similar argument.

Notice that, since E;, < E,,11,Vn € N, it holds that infy>, Ex = E,,. Indeed, E,, <
Ex,Vk = n, meaning E,, < infy>, Ex. By the definition of infimum, infy>n, Ex < Ey, and

the equality follows from these two inequalities.

Furthermore, given m,n € N, then we have that SUPy> ., Ek = Supy-,, Exk. Indeed,
let us assume without any loss of generality that m > n. Notice that E; < E,, <

sup, Ex, V1€ {I}{Z,, and thus

m—1
sup Eyx = U Ei U sup Ey,
k=n l=n k=m
= sup Ex.
k=m

Finally, notice that

limsup E,, = inf sup Ey,
n—-+oo nelNg>n

inf sup Ey,

= sup ky,
k=0
=sup En.

neN

On the other hand,

liminf E,, = sup inf Ey,
n—-+oo neN k=n

=supky,
neN
= limsup E,.

n—-+o00

Therefore, we may conclude that (E, )nen converges. Since

limsup E,, = liminfE, = supEy,,
n—+o00 n—+oo neN

we see that

lim E,, =supk,,
n—+oo neN

concluding the proof.

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

Computing the limits of series of sets might be troublesome, but there is a way of

converting such limits into numerical limits by employing characteristic functions.
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Definition 17 [Characteristic Function of a Set]:
Let M be a set and E € P(E). The characteristic function of E is the function xg: M —

{0,1} defined through
) 1, ifx€E, 2.32)
XEXI =00, ifx ¢ E. e

Proposition 18:
Let M be a set and (Ep )nen € P(M)Y. For every p € M it holds that

Xlimsup E, (P) = limsupXe, (P), XiminfE, (p) = liminfxe, (p). (2.33)
n— oo n—+oo n—+oo n—+oo
Ol
Proof:
Suppose Xiimsupt, (P) = 1, id est, p € limsupE. Then p € E, for infinitely many

n—-+4oo n—-+oo

neN,idest,yneN,3k > n;p € Ex. Thus, Vne N,Ik > n;xg, (p) = 1. It follows that

limsup X, (p) = inf sup xe, (p),

n—+oo el x>n

= inf 1,
neN

=1,
= Xlimsup E,, (p) : (2.34)

n—-+4oo

Suppose NOW Xiim sup E., (p) =0,idest,p ¢ limsup E,. Thendn, e N;Vk > np,,p ¢ Ex.
n—+oo n—+4o00

It follows that

limsup xg, (p) = inf sup xe, (p),

n—+00 neNyg>n

inf Sup Xe, (),

n=np k=n

= inf 0,

nznp
=0,
= Xlimsup E,, (p) : (235)

n—+oo

The proof for the inferior limit is analogous. [ |

We might now define some algebraic structures in order to shape the collections of
sets we want to work with.

Definition 19 [Group]:
Let Gbe asetandlet-: G x G — G be a function. The pair (G,-) is said to be a group
if, and only if,

i. V91,92,93€ G,g1+(92+93) = (91 * 92) * g3 (associativity);

ii. dee G;Vge G,g-e = e-g = g (existence of neutral element);
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iii. Vge G,3g ' e G;g-g~ ' = g'+ g = e (existence of inverse).

A group (G, +) is said to be Abelian or commutative if, and only if, Vg1, g2 € G, g1+ g2 =
g2 * g1 (commutativity). R

Lemma 20:
Let (G, ) be a group. The following properties hold:

i. 3lee G;Vge G,gre=e-g=g;
ii. Vvge G,3'gleG;g-gt=gl-g=c ]
Proof:
i. Suppose e and e* are neutral elements of G. Then it follows that
e=e-e" =e¢e". (2.36)

1

ii. Given g € G, suppose g~ and g* are inverses of g. Then

g-=e-g"=(979) g" =g '-(g-g") =g re=9g " (2.37)

This concludes the proof. [
Proposition 21:

Let M be a set. (P(M), &) is an Abelian group. O

Proof:
By construction, A: P(M) x P(M) — P(M) is a function. Proposition 7 guarantees A
is associative and commutative. Notice that, given any E € P(M),

Eag = (Eu @)\(E n 2),
=E\g,
= E. (2.38)

Since A is commutative, JAE = E as well. Thus, @ is a neutral element. Furthermore,
notice that, given E € P(M),

EAE = (EUEN\(ENE),
- E\E,
_ o (2.39)

Therefore, a given set E € P(M) has itself as is its own inverse. This concludes the
proof. [

Definition 22 [Ring]:
Let Rbe asetand let +: R x R — Rand «: R x R — R be functions. The triple (R, +,*)
is said to be a ring if, and only if,

i. (R, +)is an Abelian group;
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ii. «is associative: Ya,b,ce R, a+(b-c) =(a-b)-c;
iii. YVa,b,ceR,a+(b+c)=a-b+ a-c (left distributive law of - over +);
iv. Va,b,ceR,(a+b)-c = a-c+ b-c (right distributive law of - over +).

Aring (R, +,-) is said to be unital if 31 € R;Vae R,a-1=1-a = a, in which case 1 is
called the ring’s unity. It is said to be commutative if Va,be R,a-b =b-a.
The operation + is commonly referred to as addition, while - is commonly referred to

as multiplication. 'y
Notation:

In a ring (R, +,+), we denote the inverse additive element of some element a € R by
—a. ¢
Lemma 23:

Let (R, +,+) be a unital ring. 3'1 e R;VaeR 1-a=a-1=a. O
Proof-:

Suppose 1 and 1* are unities of (R, +,+). Then

1=1-1* = 1%, (2.40)
as desired. [ |
Proposition 24:

Let M be a set. (P(M), &, N) is a unital commutative ring. O

Proof:
Proposition 21 guarantees (P(M), A) is an Abelian group. It is known from elementary
set theory that N is commutative and associative. Given E € P(M), notice that

EAM=MnE=E. (2.41)

Hence, if (P(M), A, n) is a ring, it is a unital commutative ring with unity M. We now
must only prove the distributive laws. Notice, though, that since n is commutative, we
may prove only one of the commutative laws, for the other will be implied.

LetE,F,G € P(M). Then

En(FAG)=En[(FUG)n (FFuUGY],

=En(FuG)n (FFuG",

=En[FUG]n[E°UF UG,

=[(EnF)U(EnG)]n[ECUF UE®UGT],

=[(EnF)U(ENG)]n[(EnF)°U(EnG)],

=[(EAF)U(ENG)]N[(EnF)n(EnG)],

= (EnF)A(E N G). (2.42)
Therefore, n distributes over 2, concluding the proof. |
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Definition 25 [Subring]:
Let (R, +,:) be a ring. A subring of (R,+,+) is a ring (S,®,®) such that S < R,
@:S xS — Sisgivenby (a,b) — a+band®: S x S — Sisgivenby (a,b) — a-b. &

Notation:
In general, if (R, +,) is a ring, we shall denote addition on a subring S by + and
multiplication by -, despite the fact that we are indeed considering the restrictions of +

and-to S x S. ¢
Lemma 26:

Let (R, +,+) be a commutative ring and let (S, +,+) be a subring. (S, +,+) is commutative. [
Proof:

We know that Va,b € R,a-b = b - a. In particular, this holds for all a,b € S. This
concludes the proof. [ |

Proposition 27:
Let (R, +,) be a ring. Let O denote the neutral additive element. Let S < R. Suppose
Va,beS,a+beSanda-beS,0eSand¥ a,—ae S. Then it holds that (S, +,+) isaring. O

Proof:

Since (R, +,+) is a ring, we know + is commutative and associative for all elements of
R. This implies commutativity and associativity for all elements of S as a particular case.
Since0e Sand Va € S, —a € §, it holds that (S, +) is an Abelian group, for 0 is the neutral
additive element for all elements of R (in particular, for all elements of S) and —a is the
additive inverse of a.

Since - is associative for all elements of R, it holds in particular that it is associative for
all elements of S.

Since the distributive laws holds for all elements of R, it holds in particular that they

hold for all elements of S. |
Remark:

Notice that a subring of a unital ring doesn’t need to be unital! It is not guaranteed by
the definition that the unity will be an element of the subring. &

Definition 28 [Boolean Ring]:
Let M be a setand let R = P(M) be non-empty. R is said to be a ring of sets, also known

as a Boolean ring, over M if, and only if, (R, &, n) is a subring of (P(M), &, cap). '
Remark:

We shall often refer to Boolean rings as simply rings. L)
Lemma 29:

Let R be a ring over some set M. Then @ € R. O
Proof-:

By definition, R is non-empty, and thus there is some E € R. Since R is a Boolean ring,
we know EAE = @ € R. This concludes the proof. n
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Lemma 30:
Let M be a set. Let E,F € P(M). Then it holds that

EuUF =[EAF]A[ENF], E\F=EA[EnF], E\F=[EuUF|A[EAF].

Proof-:
Notice that [EAF] n [E n F] = &

[EAF]N[ENF]=[EUF]N[ENF°A[ENTF],
= J.

Lemma 8 implies then that
[EAF]A[ENF] = [EAF] L [EnF],
[(EUF)n(ENF)°JU(ENTF),

=(EuF)u(EnF),
=EBEuUl

For the second identity, notice that E n F < E. Thus, Lemma 9 yields

EA[EAF] =E\(EnF),
—E\F.

Finally, notice, for the third identity, that EAF < E U F. Lemma 9 then implies

[E U F]A[EAF] = [E U F]\[EAF],
= (EUF)N[(EUF) n(EnF°,
=(EUR)N[(EUF°U(EnTF),
=(EuUF)n(EnF),
=(EnF),
as desired.
Theorem 31:

Let M be a set and let R < P(M) be non-empty. Then the following are equivalent:

i. Risaring over M;

ii. VE,FER EAFER,ENnFeR;
iii. VE,FeR,EAFe R, EUFe R;
iv. VE,FER,E\FER, EUFeR.

Proof:
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i. & ii. If i. holds, the definition of rind over a set automatically implies ii. Suppose
then that ii. holds. Since R is non-empty, 3E € R. Notice that VE € R, —E € R, for E
is its own additive inverse. Furthermore, EAE = @& € R. Thus, all of the conditions
of Proposition 27 are met, allowing us to conclude that (R, 4, n) is a subring of
(P(M), A, n), id est, R is a ring of sets.

ii. = iii. Itis clear that EAF € R, for it is taken as a hypothesis. Lemma 30 ensures
EuFelR

iii. = iv. Itis clear that E U F € R. Lemma 30 ensures E\F € R.

iv. = ii. Lemma 6 guarantees EAF € R. Since E n F = [E U F]\[EAF], we see that
E n F € R, concluding the proof. |

Definition 32 [Boolean Algebra]:
Let M be a set and let € < P(M) be a ring over M. € is said to be an algebra of sets, also
known as a Boolean algebra, over M if, and only if, VE € €, E° € €. '

Theorem 33:
Let M be a set and let € = P(M) be non-empty. Then the following are equivalent:

i. & is an algebra over M;
ii. €isaring over M and M € &;
iii. VE,Fe &, E°e E,EnFeé;
iv. VE,Fe &, ECe E, EUFeé. O
Proof:

i. = ii. By the definition of algebra over a set, we know € is a ring. Lemma 29
guarantees @ € . Since € is an algebra, we see that @® = M € €.

ii. = iii. Theorem 31 guarantees that VE,Fe £, E\Fe E,EnFe . Let E € . Since
M e &, we see that M\E = E® € €.

iii. = iv. VE € &, E° € &, by hypothesis. Let E,F € £&. Then E®,F°® € €. Thus,
EC N F® e & Finally, (ENF®)°=E U Feé&.

iv. = i. Since € is non-empty, we know that VE € €, —E € € (for E is its own additive
inverse). We also know that (E U E®)° = M® = @ € €. Noticethat ENnF = (E¢ U F¢)®
€. Finally, E\F = E n F® € €. Proposition 27 and Theorem 31 guarantee then that £
is a ring, and we know E° € £,V E € € by hypothesis. Hence, € is an algebra.

|

Algebras seem to be an interesting stage for us to develop Measure Theory. After all,
if we know the volume of two different sets, we should also be able to know the volume of
their union. We also expect to be able to know the volume of the whole space. Finally, if
we know the volume of a set and some subset of it, we expect the volume of the different
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to be the difference of the volumes. Algebras (in fact, o-algebras, which we shall define in
an instant) shall eventually occur quite naturally within the theory.

We might also be interested in dealing with countable unions of sets, which motivates
the following definition. Notice we are restricting ourselves to countable unions, for
arbitrary unions would lead us to reobtaining P(M) far more easily, as we already know
we can’t measure every set.

Definition 34 [o-sup-closed and o-inf-closed]:

Let M be a setand let £ < P(M). € is said to be o-sup-closed if, and only if, V(Ey )nen €
&N it holds that sup, .y En € €. Analogously, € is said to be o-inf-closed if, and only if,
V(En)nen € €Y, it holds that inf,,cy Ey, € €.

Finally, € is said to be o-closed if, and only if, it is simultaneously o-sup-closed and
o-inf-closed. [ )

Definition 35 [o-rings and c-algebras]:
Let M be a set. A ring over M is said to be a o-ring over M if, and only if, it is
o-sup-closed. Analogously, an algebra over M is said to be a o-algebra over M if, and only

if, it is o-sup-closed. )
Proposition 36:

Let M be a set and let R be a ring over M. If R is o-sup-closed, it is o-inf-closed. Let € be an
algebra over M. € is o-sup-closed if, and only if, it is o-inf-closed. O
Proof:

Let (En)nen € RY. We want to prove that infcy En € R.

Let us denote E = sup, _ En. Since R is o-sup-closed, we know that E € R. Since R is
a ring, we know that F,, = E\E,, € R,Vn € N. As a consequence, sup,, . Fn € R. Hence,
E\[sup, .y Fn] € R. However, notice that

B Cc

E\[supFn] = En [sup(E n E%)] ,
neN L neN

—En |inf(E°u En)] ,

| neN

=En EcuinfEn],

neN

=Eninf E,,
neN

— inf Ey,, (2.48)

neN

where, in the last line, we used the fact thatinfcy En S sup | En. Thus, Ris o-inf-closed.
Let us now consider an algebra €. Since € is closed under complements, we know that
ES, € €,Yn e N. We also know that E = sup,  E}, € €. E® € €. However,

Cc
EC = {sup E%] = inf E, € €. (2.49)
neN

neN

Hence, if € is o-sup-closed, it is also o-inf-closed. A similar proof applies to the reverse
statement. [ ]
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Corollary 37:

All o-rings are o-closed. O
Proof:
Straightforward from the definition of o-ring and Proposition 36. |
Corollary 38:
Let R be a o-ring over a set M. Let (Eq)nen € RN, It holds that
liminfE,, e R, limsupE, e R. (2.50)
n—-+oo n——4o00 D

Proof-:
From Corollary 37 we know that ¥n € N,F,, = infy> Ex € R. Corollary 37 also
implies then that sup_ _ Fn € R. Thus, we conclude that

inf Ey = HminfE,, , .
sup nf B = HminfEn < % @s)
as desired. The proof for lim sup is analogous. [ |

Theorem 39:
Let M be a set and let £ < P(M) be a non-empty collection. The following are equivalent:

i. &€ isa o-algebra;
ii. VEe &, E® e €and € is o-sup-closed;
iii. VE e &, E® € € and & is o-inf-closed. O
Proof:
i. = ii. Holds by definition;

ii. = iii. Let (En)nen € €Y. We know ES € &,¥n € N. Thus, sup, .y E5 € €. Finally,
[sup,.cn E%]C = infpey En € €.

iii. = i. Let E,F € €. o-inf-closedness guarantees E n F, and we know E® € € by
hypothesis. Theorem 33 guarantees that € is an algebra. Proposition 36 ensures € is

a o-algebra.
[

Given two sets M, N, a function f: M — N and a ring (algebra, o-ring or o-algebra)
over N, we can “pull-it-back” to obtain a similar structure on M.

Proposition 40:
Let M and N be sets and let f: M — N be a function. Suppose R is a ring, algebra, o-ring or
o-algebra over N. Then

F1(R) = {f—l(E) Ee Jz} (2.52)

is a ring, algebra, o-ring or o-algebra over M. g
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Proof:
Suppose R is a o-ring. Let Fy,F» € f~1(R). Then 3Ey, E» € R such that F; = f~1(E)
and F, = f~1(E,). We then have

FLuF=f1(E) ufi(E),
= YE; UE) e fi(R). (2.53)

Similarly,

Fl\Fz = Fl N FS,
= 1(Ey) n F71(ED),
= Y(E; UES) e FL(R). (2.54)

Let (Fr)nen € T (R)N. Then there is (En)ney € RY such that F, = f71(E,),Vn e N.
We then have

sup Fp, = sup f 1 (En),

neN neN

— ! (sup En> e f1(R). (2.55)

neN

Similar proofs apply for algebras. [ |

Notation:
Let M and N be sets and let f: M — N be a function. Let € < P(N) be an arbitrary
collection. We denote the set of the preimages of elements of € by f~1(&), id est,

18 = {f*l(E),-E c e} . (2.56)
.

In a similar manner, given some structure defined on M, we are able to “push-it-
forward” and obtain a similar structure on N.

Proposition 41:
Let M and N be sets and let f: M — N be a function. Suppose R is a ring, algebra, o-ring or
o-algebra over M. Then

R* = {E e P(N); fL(E) e az} (2.57)

is the largest ring, algebra, o-ring or o-algebra over M such that 1 (R*) < R. O

Proof:

Let E,F € R*. Then f~1(E),f"}(F) € R. Thus, fY(E) u f}(F) = f(EUTF) e R
Hence, E U F € R*. Similar arguments can be made to prove R* is a ring, algebra, o-ring
or o-algebra over M.

Let us now prove that R* is the largest such structure with the property that f~!(R*)
R. f71(R*) = R holds by the very definition of R*.

Suppose € is a ring, algebra, o-ring or o-algebra such that f~1(£) € R. Let E € &. We
know that f~1(E) € R. Thus, E € R*, by definition of R*. This concludes the proof. [ |
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We may specify a ring, algebra, o-ring or o-algebra by demanding it to be the smallest
such structure containing a given set. This is possible due to the following result.

Lemma 42:

Let M be a set, A be an arbitrary collection of indices and let, YA € A, R\ < P(M) be a ring,
algebra, o-ring or o-algebra. Then it holds that R = infaea Ry is also a ring, algebra, o-ring or
o-algebra. O

Proof:

We shall prove the result for o-algebras. The remaining cases are similar.

Suppose E € R. Then E € R),VA € A. Since all these collections are o-algebras,
E€ e R),VA € A. Hence, E¢ € R.

Assume now (Ep)neny € RY. Then (E)nen € RY, VA € A. Since all R are o-algebras,
it holds that sup . En € R, VA € A. Hence, sup, . En € R.

Theorem 39 guarantees R is a o-algebra. [

Definition 43 [Rings, Algebras, o-rings and o-algebras Generated by a Family]:

Let M be a set and let F < P(M) be an arbitrary family of sets. The ring generated by
J (analogously for an algebra, o-ring or o-algebra) is the smallest ring R containing the
family 7, id est, the ring R(J) defined by

R(F) =inf {R; F < R, Ris a ring over M} . (2.58)
Given a family F, we denote the ring generated by F by R(F), the o-ring generated by
F by 5(F), and the o-algebra generated by F by o(F). [ )
Proposition 44:
Let M, N be sets, f: M — N be a function and § < P(N). It holds that
1 (0(F) = o (f—l(ff)> , (2.59)
with similar results for rings, algebras and o-rings. O

Proof:
We shall prove the result for o-algebras. The remaining cases are similar.
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